Penerapan Metode CNN (Convolutional Neural Network) dalam Mengklasifikasi Uang Kertas dan Uang Logam
Abstract
Banknotes and coins are valuable assets that are used as legal means of payment in everyday life. The value of these two types of money has been determined and is printed on each piece of banknote when used in transactions and trade. Even though currently banknotes can be recognized using technology such as ATM machines, these machines are only able to recognize the value of the largest currency owned by a country. Computers require digital images as input to display the information contained therein because computers do not have the ability of the human eye to directly recognize or calculate the objects they see. Therefore, techniques or methods are needed that aim to obtain information from digital images to facilitate human interpretation. This research aims to design a system for detecting banknotes in images using the Convolutional Neural Network (CNN) architecture, which is a form of deep learning. . The system also integrates image pre-processing using user-based manual annotation techniques in Python program code. Using the CNN method, a test was carried out to detect the nominal amount of money in the input image. Test results using 29 banknote dataset samples and 31 coin money dataset samples show that the two types of money are divided into two classes, namely paper and coins. From the training carried out on banknotes and coins, an average accuracy of 98% was obtained, showing good results. Repetition of the detection process also shows consistent output probabilities. However, there are several denominations of money that show high accuracy values, so it can be concluded that the labeling annotation method is thought to be less effective.
Downloads
References
Advokasi Hukum Dan Demokrasi. (2024). Advokasi Hukum dan Demokrasi (AHD). 2(2). https://doi.org/10.61234/ahd.v2i2.60
DLY, I. A., Jasril, J., Sanjaya, S., Handayani, L., & Yanto, F. (2023). Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data. Journal of Information System Research (JOSH), 4(4), 1176–1185. https://doi.org/10.47065/josh.v4i4.3702
Fadlia, N., & Kosasih, R. (2019). KLASIFIKASI JENIS KENDARAAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN). Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 207–215. https://doi.org/10.35760/tr.2019.v24i3.2397
Hamid, M., Putra, A. C., & Usman, A. A. H. (2024). Klasifikasi Citra Uang Kertas dengan Menggunakan Metode Neural Network. www.jurnal.ummu.ac.id/dintek
Ibnu Adam, R., Rozikin, C., Singaperbangsa Karawang, U., HSRonggo Waluyo, J., Timur, T., & Barat, J. (2024). Implementasi Deep Learning Dalam Mengidentifikasi Keretakan Ban. Cipta Cendikia Jurnal Informasi Dan Komputer, 12(1), 2024. https://www.k
Irfan, D., Rosnelly, R., Wahyuni, M., Samudra, J. T., & Rangga, A. (2022). Perbandingan Optimasi Sgd, Adadelta, Dan Adam Dalam Klasifikasi Hydrangea Menggunakan Cnn. In Journal of Science and Social Research (Issue 2). http://jurnal.goretanpena.com/index.php/JSSR
Irfansyah, D., Mustikasari, M., Suroso, A., Sistem Informasi Bisnis, J., Ilmu Komputer dan Teknologi Informasi, F., Gunadarma, U., Sistem Informasi, J., Bani Saleh, S., Margonda Raya No, J., Depok, B., & Hasibuan No, J. M. (2021). Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi. Jurnal Informatika: Jurnal Pengembangan IT (JPIT), Vol.6, No.2, Mei 2021, 6(2). https://data.mendeley.com/datasets/c5yvn32dzg/2.
Li, B., & Wang, Y. (2020). Money creation within the macroeconomy: An integrated model of banking. International Review of Financial Analysis, 71. https://doi.org/10.1016/j.irfa.2020.101547
Malik Ibrahim, M., Rahmadewi, R., & Nurpulaela, L. (2023). Pendeteksian Nominal Uang Pada Gambar Menggunakan Convolutional Neural Network: Integrasi Metode Pra-Pemrosesan Citra Dan Klasifikasi Berbasis Cnn. In Jurnal Mahasiswa Teknik Informatika (Vol. 7, Issue 2).
Manalu, E. J., Sahari, A., & Nadirah, I. (2023). Kebijakan Penanggulangan Tindak Pidana Mata Uang Oleh Kepolisian. Legalitas: Jurnal Hukum, 14(2), 249. https://doi.org/10.33087/legalitas.v14i2.346
Nugroho, B., & Yulia, E. (2021). Kinerja Metode Cnn Untuk Klasifikasi Pneumonia Dengan Variasi Ukuran Citra Input. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 8(3), 533–538. https://doi.org/10.25126/jtiik.202184515
Ridho Aji Pangestu, B. R. F. T. A. (2020). Implementasi Algoritma Cnn Untuk Klasifikasi Citra Lahan Dan Perhitungan Luas. Jurnal Informatika Dan Sistem Informasi (JIFoSI, 1(1).
Rozaqi, A. J., Sunyoto, A., & Arief, R. (2021). Deteksi Penyakit pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network Detection of Potato Leaves Disease Using Image Processing with Convolutional Neural Network Methods. Citec Journal, 8(1).
Setiawan, W. (2019). Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus. Jurnal Ilmiah SimanteC, 7(2).
Trinh, H.-C., Vo, H.-T., Pham, V.-H., Nath, B., & Hoang, V.-D. (2020). Currency Recognition Based on Deep Feature Selection and Classification (pp. 273–281). https://doi.org/10.1007/978-981-15-3380-8_24
Ulfah, J., & Nurdin, N. (2023). Implementasi Metode Deteksi Tepi Canny Untuk Menghitung Jumlah Uang Koin Dalam Gambar Menggunakan Opencv. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3). https://doi.org/10.23960/jitet.v11i3.3147
Zhao, H., & Zhang, L. (2020). Talking money at home: the value of family financial socialization. International Journal of Bank Marketing, 38(7), 1617–1634. https://doi.org/10.1108/IJBM-04-2020-0174
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode CNN (Convolutional Neural Network) dalam Mengklasifikasi Uang Kertas dan Uang Logam
Pages: 778-785
Copyright (c) 2024 Anggita Eka Rewina, Sulistyowati Sulistyowati, Muchamad Kurniawan, Muhammad Dinarta N, Sita Fara Yunanda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).