Klasifikasi Dialek Bahasa Inggris British dan Amerika menggunakan Support Vector Machine


  • Kuswandaru Kuswandaru * Mail Universitas Mercu Buana Yogyakarta, Yogyakarta, Indonesia
  • Mutaqin Akbar Universitas Mercu Buana Yogyakarta, Yogyakarta, Indonesia
  • (*) Corresponding Author
Keywords: Pronounciation; English; Clasification; SVM; Algorithm

Abstract

English has become an international language used in various fields, including education, business, and tourism. Indonesia, having become a member of the AEC (Asean Economic Community), makes it increasingly important for Indonesian society, especially the younger generation, to master English proficiently and accurately. English, as an international language, encompasses numerous dialects, such as British and American dialects. This research is motivated by the issue that differences between British and American English dialects can affect understanding and communication in educational, business, and everyday life contexts. Identifying and classifying dialects in English speech is crucial to aid both native and non-native speakers in better understanding communication contexts. This study aims to develop a classification method using the Support Vector Machine (SVM) algorithm to distinguish between British and American English dialects in speech. By leveraging SVM, this research will attempt to identify linguistic features that differentiate between these dialects, such as intonation, vowels, consonants, and rhythm patterns obtained from sound feature extraction using Mel Frequency Cepstral Coefficients (MFCC). In this model training phase, a dataset comprising 720 speech samples collected from various text-to-speech service provider websites is utilized to represent both dialects. Subsequently, the trained model is tested using 24 test data collected from original recordings of several individuals to evaluate its accuracy. The results of this research yield an accuracy rate of 91.6% on the model with a configuration of Cost value 1, gamma 0.001, and polynomial kernel. From these results, it can be concluded that this model exhibits a sufficiently high accuracy, with 2 misclassifications out of 24 test data.

Downloads

Download data is not yet available.

References

Akbar, M. (2021). Traffic sign recognition using convolutional neural networks. Jurnal Teknologi Dan Sistem Komputer, 9(2), 120–125. https://doi.org/10.14710/jtsiskom.2021.13959

Akbar, M. (2022). Pengenalan Rambu Lalu-lintas menggunakan Convolutional Neural Network (Studi Kasus: Rambu Lalu-lintas Indonesia). Jurnal Nasional Informatika Dan Teknologi Jaringan, 6(2), 272–276. http://dx.doi.org/10.30743/infotekjar.v6i2.4564

Akbar, M., Purnomo, A. S., & Supatman, S. (2022). Multi-Scale Convolutional Networks untuk Pengenalan Rambu Lalu Lintas di Indonesia. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 310–315. https://doi.org/10.32736/sisfokom.v11i3.1452

Bai, Z. (2018). An Analysis of English Vocabulary Learning Strategies. Journal of Language Teaching and Research, 9(4), 849. https://doi.org/10.17507/jltr.0904.24

Chazar, C., & Erawan, B. (2020). Machine Learning Diagnosis Kanker Payudara Menggunakan Algoritma Support Vector Machine. INFORMASI (Jurnal Informatika Dan Sistem Informasi), 12(1), 67–80. https://doi.org/10.37424/informasi.v12i1.48

Dwi Cahyo, M. P., Widodo, & Prasetya Adhi, B. (2019). Kinerja Algoritma Support Vector Machine dalam MenentukanKebenaran Informasi Banjir di Twitter. PINTER : Jurnal Pendidikan Teknik Informatika Dan Komputer, 3(2), 116–121. https://doi.org/10.21009/pinter.3.2.5

Fitriawati, L. S., Negara, A. B. P., & Nyoto, R. D. (2020). Implementasi Text To Speech Pada Website Menggunakan Metode Shallow Parsing. InfoTekJar : Jurnal Nasional Informatika Dan Teknologi Jaringan, 5(1), 61–69. https://doi.org/10.30743/infotekjar.v5i1.2141

Harmon, J. M., Wood, K. D., & Kiser, K. (2009). Promoting Vocabulary Learning with the Interactive Word Wall. Middle School Journal, 40(3), 58–63. https://doi.org/10.1080/00940771.2009.11495588

Hermawan, A., Jowensen, I., Junaedi, J., & Edy. (2023). Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine. JST (Jurnal Sains Dan Teknologi), 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358

Kersen, K., & Widhiarso, W. (2023). Penerapan Metode Convolutional Neural Network dalam Klasifikasi Bahasa Isyarat. MDP Student Conference, 2(1), 244–249. https://doi.org/10.35957/mdp-sc.v2i1.4221

Kusumaningtyas, E. A., Asegaf, M. M., & Dikuraisyin, B. (2022). HUMAN CAPITAL SEBAGAI STRATEGI PENGEMBANGAN SUMBER DAYA PROFESIONAL DI LEMBAGA ZAKAT NURUL HAYAT. Filantropi : Jurnal Manajemen Zakat Dan Wakaf, 2(2), 155–174. https://doi.org/10.22515/finalmazawa.v2i2.4847

Mukarramah, R., Atmajaya, D., & Ilmawan, L. B. (2021). Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter. ILKOM Jurnal Ilmiah, 13(2), 168–174. https://doi.org/10.33096/ilkom.v13i2.851.168-174

Novianti, D. N., Shiddieq, D. F., Roji, F. F., & Susilawati, W. (2024). Komparasi Algoritma Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Metaverse: Comparison of Support Vector Machine and Naïve Bayes Algorithms for Sentiment Analysis of the Metaverse. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 231–239. https://doi.org/10.57152/malcom.v4i1.1061

Nugraha, A. S., & Purnamasari, K. K. (2019). Penerapan Metode Support Vector Machine Pada Part Of Speech Tag Bahasa Indonesia. Universitas Komputer Indonesia.

Pratama, R. (2022). Macam-Macam Dialek Bahasa Inggris dan Potensinya dalam Memunculkan Kesalahpahaman pada Komunikasi Lintas Budaya. Anuva: Jurnal Kajian Budaya, Perpustakaan, Dan Informasi, 6(4), 445–454. https://doi.org/10.14710/anuva.6.4.445-454

Putranti, B. E., & Ambawani, S. (2019). PENTINGNYA BELAJAR BAHASA INGGRIS UNTUK ANAK USIA SEKOLAH DASAR DI LINGKUNGAN RT 37 RW 13 KELURAHAN GIWANGAN KECAMATAN UMBULHARJO. Jurnal Dharma Bakti, 2(2), 177–183. https://doi.org/10.34151/dharma.v2i2.2382

Rakajati, B., & Hidayat, E. Y. (2024). Perbandingan Metode Naive Bayes dan Support Vector Machine Pada Klasifikasi 22 Bahasa Daerah. JURNAL MEDIA INFORMATIKA BUDIDARMA, 8(1), 221–230. https://doi.org/10.30865/mib.v8i1.7236

Ritonga, A. S., & Purwaningsih, E. S. (2018). Penerapan Metode Support Vector Machine ( SVM ) Dalam Klasifikasi Kualitas Pengelasan Smaw ( Shield Metal Arc Welding ). Ilmiah Edutic, 5(1), 17–25.

Saputra, M. F., & Nasution, M. A. E. (2024). Implementasi Speech Recognition Pada Perpustakaan SMKS Teladan Medan. Jurnal Info Digit, 2(1), 278–291.

Vinge, R., & McKelvey, T. (2019). Understanding Support Vector Machines with Polynomial Kernels. 2019 27th European Signal Processing Conference (EUSIPCO), 1–5. https://doi.org/10.23919/EUSIPCO.2019.8903042


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Dialek Bahasa Inggris British dan Amerika menggunakan Support Vector Machine

Dimensions Badge
Article History
Published: 2024-03-26
Abstract View: 183 times
PDF Download: 166 times
Section
Articles