Analisis Sentimen Jogja Darurat Sampah di Twitter menggunakan Ekstraksi Fitur Model Word2Vec dan Convolutional Neural Network


  • Yoga Yusanto * Mail Universitas Mercu Buana Yogyakarta, Yogyakarta, Indonesia
  • Mutaqin Akbar Universitas Mercu Buana Yogyakarta, Yogyakarta, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment Analysis; JogjaDaruratSampah; CNN; Word2Vec; Twitter

Abstract

Due to a waste emergency, the Special Region of Yogyakarta has garnered public attention and sparked discussions. Numerous community groups express their opinions through various social media platforms, especially Twitter. It's undeniable that Twitter is currently one of the places for freely expressing opinions. Therefore, sentiment analysis plays a crucial role in efforts to categorize public opinions on something trending or viral into three categories: positive, negative, and neutral. In this study, the dataset was obtained using scraping techniques and the tweetscraper tool from the APIFY actor web.harvester/easy-twitter-search-scraper. The method employed in this analysis is the Convolutional Neural Network (CNN) classification method using Word2Vec model extraction. The study involves 505 tweets in Bahasa Indonesia with the hashtags #JogjaDaruratSampah (#JogjaDaruratSampah) and #TPSTPiyungan as data. Out of these, 381 tweets are utilized as training data, and the remaining 124 tweets are used as test data. The highest accuracy in testing the training data was achieved in the 19th epoch with a 90% accuracy rate. It can be concluded from the testing process that this study can identify positive, negative, and neutral sentiments with an accuracy of 53%. The sentiment analysis results indicate a significant amount of negative tweets, accounting for 49.7% of the total 505 tweets.

Downloads

Download data is not yet available.

References

Akbar, M. (2021). Traffic sign recognition using convolutional neural networks. Jurnal Teknologi Dan Sistem Komputer, 9(2), 120–125. https://doi.org/10.14710/jtsiskom.2021.13959

Akbar, M., Purnomo, A. S., & Supatman, S. (2022). Multi-Scale Convolutional Networks untuk Pengenalan Rambu Lalu Lintas di Indonesia. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 310–315. https://doi.org/10.32736/sisfokom.v11i3.1452

Al-Saqqa, S., & Awajan, A. (2019). The Use of Word2vec Model in Sentiment Analysis: A Survey. Proceedings of the 2019 International Conference on Artificial Intelligence, Robotics and Control, 39–43. https://doi.org/10.1145/3388218.3388229

Darwis, D., Siskawati, N., & Abidin, Z. (2021). PENERAPAN ALGORITMA NAIVE BAYES UNTUK ANALISIS SENTIMEN REVIEW DATA TWITTER BMKG NASIONAL. Jurnal Tekno Kompak, 15(1), 131. https://doi.org/10.33365/jtk.v15i1.744

Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter. SMATIKA JURNAL, 10(02), 71–76. https://doi.org/10.32664/smatika.v10i02.455

Istriani, E. (2023). PKM Pendampingan Manajemen Sampah di RW 2 Pakualaman Yogyakarta. Prosiding Seminar Nasional Pengabdian Kepada Masyarakat, 27–33. http://sendimas2023.ukrida.ac.id/pubs/6/pkm-pendampingan-manajemen-sampah-di-rw-2-pakualaman-yogyakarta

Laurensz, B. & Eko Sediyono. (2021). Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(2), 118–123. https://doi.org/10.22146/jnteti.v10i2.1421

Nasution, M. R. A., & Hayaty, M. (2019). Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter. Jurnal Informatika, 6(2), 226–235. https://doi.org/10.31311/ji.v6i2.5129

Nurdin, A., Anggo Seno Aji, B., Bustamin, A., & Abidin, Z. (2020). PERBANDINGAN KINERJA WORD EMBEDDING WORD2VEC, GLOVE, DAN FASTTEXT PADA KLASIFIKASI TEKS. Jurnal Tekno Kompak, 14(2), 74. https://doi.org/10.33365/jtk.v14i2.732

Pradana, A. I., Rustad, S., Shidik, G. F., & Agus Santoso, H. (2022). Indonesian Traffic Signs Recognition Using Convolutional Neural Network. 2022 International Seminar on Application for Technology of Information and Communication (iSemantic), 426–430. https://doi.org/10.1109/iSemantic55962.2022.9920448

Putra A P & Syafira A F. (2023). Analisis Sentimen Data Twitter Topik Politik Dengan Metode Naive Bayes Dan Convolutional Neural Networks (Cnn). https://doi.org/10.5281/ZENODO.8396579

Rachman, F. F., & Pramana, S. (2020). Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter. Indonesian of Health Information Management Journal, 8(2), 100–109.

Ratnaningtyas, Rr. P. (2020). Sampah Dalam Kacamata Media Online. Jurnal Komunikasi, 12(1), 16. https://doi.org/10.24912/jk.v12i1.5287

Rifai, W., & Winarko, E. (2019). Modification of Stemming Algorithm Using A Non Deterministic Approach To Indonesian Text. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(4), 379. https://doi.org/10.22146/ijccs.49072

Sawicki, J., Ganzha, M., & Paprzycki, M. (2023). The State of the Art of Natural Language Processing—A Systematic Automated Review of NLP Literature Using NLP Techniques. Data Intelligence, 5(3), 707–749. https://doi.org/10.1162/dint_a_00213

Susilo, M. E., Prayudi, P., & Florestyanto, M. Y. (2023, Oktober). PENGELOLAAN SAMPAH RUMAH TANGGA UNTUK MEMBANTU MENGATASI KRISIS SAMPAH DI YOGYAKARTA. Prosiding Seminar Nasional LPPM UPN Veteran Yogyakarta. Seminar Nasional Pengabdian Masyarakat “Pemberdayaan Masyarakat Berkelanjutan di Era Society 5.0 sebagai Implementasi Bela Negara,” Yogyakarta.

Toraman, C., Yilmaz, E. H., Şahinuç, F., & Ozcelik, O. (2023). Impact of Tokenization on Language Models: An Analysis for Turkish. ACM Transactions on Asian and Low-Resource Language Information Processing, 22(4), 1–21. https://doi.org/10.1145/3578707

Yuliska, Y., Qudsi, D. H., Lubis, J. H., Syaliman, K. U., & Najwa, N. F. (2021). Analisis Sentimen pada Data Saran Mahasiswa Terhadap Kinerja Departemen di Perguruan Tinggi Menggunakan Convolutional Neural Network. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(5), 1067. https://doi.org/10.25126/jtiik.2021854842

Yuliska, Y., & Syaliman, K. U. (2020). Literatur Review Terhadap Metode, Aplikasi dan Dataset Peringkasan Dokumen Teks Otomatis untuk Teks Berbahasa Indonesia. IT Journal Research and Development, 5(1), 19–31. https://doi.org/10.25299/itjrd.2020.vol5(1).4688


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Jogja Darurat Sampah di Twitter menggunakan Ekstraksi Fitur Model Word2Vec dan Convolutional Neural Network

Dimensions Badge
Article History
Published: 2024-03-30
Abstract View: 410 times
PDF Download: 450 times
Section
Articles