Analisis Sentimen Jogja Darurat Sampah di Twitter menggunakan Ekstraksi Fitur Model Word2Vec dan Convolutional Neural Network
Abstract
Due to a waste emergency, the Special Region of Yogyakarta has garnered public attention and sparked discussions. Numerous community groups express their opinions through various social media platforms, especially Twitter. It's undeniable that Twitter is currently one of the places for freely expressing opinions. Therefore, sentiment analysis plays a crucial role in efforts to categorize public opinions on something trending or viral into three categories: positive, negative, and neutral. In this study, the dataset was obtained using scraping techniques and the tweetscraper tool from the APIFY actor web.harvester/easy-twitter-search-scraper. The method employed in this analysis is the Convolutional Neural Network (CNN) classification method using Word2Vec model extraction. The study involves 505 tweets in Bahasa Indonesia with the hashtags #JogjaDaruratSampah (#JogjaDaruratSampah) and #TPSTPiyungan as data. Out of these, 381 tweets are utilized as training data, and the remaining 124 tweets are used as test data. The highest accuracy in testing the training data was achieved in the 19th epoch with a 90% accuracy rate. It can be concluded from the testing process that this study can identify positive, negative, and neutral sentiments with an accuracy of 53%. The sentiment analysis results indicate a significant amount of negative tweets, accounting for 49.7% of the total 505 tweets.
Downloads
References
Akbar, M. (2021). Traffic sign recognition using convolutional neural networks. Jurnal Teknologi Dan Sistem Komputer, 9(2), 120–125. https://doi.org/10.14710/jtsiskom.2021.13959
Akbar, M., Purnomo, A. S., & Supatman, S. (2022). Multi-Scale Convolutional Networks untuk Pengenalan Rambu Lalu Lintas di Indonesia. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 310–315. https://doi.org/10.32736/sisfokom.v11i3.1452
Al-Saqqa, S., & Awajan, A. (2019). The Use of Word2vec Model in Sentiment Analysis: A Survey. Proceedings of the 2019 International Conference on Artificial Intelligence, Robotics and Control, 39–43. https://doi.org/10.1145/3388218.3388229
Darwis, D., Siskawati, N., & Abidin, Z. (2021). PENERAPAN ALGORITMA NAIVE BAYES UNTUK ANALISIS SENTIMEN REVIEW DATA TWITTER BMKG NASIONAL. Jurnal Tekno Kompak, 15(1), 131. https://doi.org/10.33365/jtk.v15i1.744
Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter. SMATIKA JURNAL, 10(02), 71–76. https://doi.org/10.32664/smatika.v10i02.455
Istriani, E. (2023). PKM Pendampingan Manajemen Sampah di RW 2 Pakualaman Yogyakarta. Prosiding Seminar Nasional Pengabdian Kepada Masyarakat, 27–33. http://sendimas2023.ukrida.ac.id/pubs/6/pkm-pendampingan-manajemen-sampah-di-rw-2-pakualaman-yogyakarta
Laurensz, B. & Eko Sediyono. (2021). Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(2), 118–123. https://doi.org/10.22146/jnteti.v10i2.1421
Nasution, M. R. A., & Hayaty, M. (2019). Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter. Jurnal Informatika, 6(2), 226–235. https://doi.org/10.31311/ji.v6i2.5129
Nurdin, A., Anggo Seno Aji, B., Bustamin, A., & Abidin, Z. (2020). PERBANDINGAN KINERJA WORD EMBEDDING WORD2VEC, GLOVE, DAN FASTTEXT PADA KLASIFIKASI TEKS. Jurnal Tekno Kompak, 14(2), 74. https://doi.org/10.33365/jtk.v14i2.732
Pradana, A. I., Rustad, S., Shidik, G. F., & Agus Santoso, H. (2022). Indonesian Traffic Signs Recognition Using Convolutional Neural Network. 2022 International Seminar on Application for Technology of Information and Communication (iSemantic), 426–430. https://doi.org/10.1109/iSemantic55962.2022.9920448
Putra A P & Syafira A F. (2023). Analisis Sentimen Data Twitter Topik Politik Dengan Metode Naive Bayes Dan Convolutional Neural Networks (Cnn). https://doi.org/10.5281/ZENODO.8396579
Rachman, F. F., & Pramana, S. (2020). Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter. Indonesian of Health Information Management Journal, 8(2), 100–109.
Ratnaningtyas, Rr. P. (2020). Sampah Dalam Kacamata Media Online. Jurnal Komunikasi, 12(1), 16. https://doi.org/10.24912/jk.v12i1.5287
Rifai, W., & Winarko, E. (2019). Modification of Stemming Algorithm Using A Non Deterministic Approach To Indonesian Text. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(4), 379. https://doi.org/10.22146/ijccs.49072
Sawicki, J., Ganzha, M., & Paprzycki, M. (2023). The State of the Art of Natural Language Processing—A Systematic Automated Review of NLP Literature Using NLP Techniques. Data Intelligence, 5(3), 707–749. https://doi.org/10.1162/dint_a_00213
Susilo, M. E., Prayudi, P., & Florestyanto, M. Y. (2023, Oktober). PENGELOLAAN SAMPAH RUMAH TANGGA UNTUK MEMBANTU MENGATASI KRISIS SAMPAH DI YOGYAKARTA. Prosiding Seminar Nasional LPPM UPN Veteran Yogyakarta. Seminar Nasional Pengabdian Masyarakat “Pemberdayaan Masyarakat Berkelanjutan di Era Society 5.0 sebagai Implementasi Bela Negara,” Yogyakarta.
Toraman, C., Yilmaz, E. H., Şahinuç, F., & Ozcelik, O. (2023). Impact of Tokenization on Language Models: An Analysis for Turkish. ACM Transactions on Asian and Low-Resource Language Information Processing, 22(4), 1–21. https://doi.org/10.1145/3578707
Yuliska, Y., Qudsi, D. H., Lubis, J. H., Syaliman, K. U., & Najwa, N. F. (2021). Analisis Sentimen pada Data Saran Mahasiswa Terhadap Kinerja Departemen di Perguruan Tinggi Menggunakan Convolutional Neural Network. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(5), 1067. https://doi.org/10.25126/jtiik.2021854842
Yuliska, Y., & Syaliman, K. U. (2020). Literatur Review Terhadap Metode, Aplikasi dan Dataset Peringkasan Dokumen Teks Otomatis untuk Teks Berbahasa Indonesia. IT Journal Research and Development, 5(1), 19–31. https://doi.org/10.25299/itjrd.2020.vol5(1).4688
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Jogja Darurat Sampah di Twitter menggunakan Ekstraksi Fitur Model Word2Vec dan Convolutional Neural Network
Pages: 679-686
Copyright (c) 2024 Yoga Yusanto, Mutaqin Akbar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).