Peramalan Jumlah Kasus Baru HIV Menurut Provinsi Menggunakan Machine Learning dengan Teknik Levenberg-Marquardt


  • Irfani Zuhrufillah * Mail Universitas Harapan Bangsa, Purwokerto, Indonesia
  • Fitri Anggraini STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Rizki Dewantara Institut Teknologi Bisnis dan Kesehatan Bhakti Putra Bangsa Indonesia, Purworejo, Indonesia
  • (*) Corresponding Author
Keywords: Forecasting; HIV; New Cases; Machine Learning; Levenberg-Marquardt

Abstract

Early detection of HIV is a crucial step to reducing transmission and increasing the success of HIV treatment. The sooner HIV is detected, the sooner treatment can be carried out so that this infection can be controlled and does not develop into AIDS. Therefore, the purpose of this study is to forecast the Number of New HIV Cases in Indonesia based on 34 Provinces so that the government can obtain information early on to determine the right policy to suppress the increasing number of new HIV cases in Indonesia. This research proposes forecasting using a Machine Learning algorithm with the Levenberg-Marquardt technique. The research data is data on the number of new HIV cases by province obtained from the 2021 Indonesian Health Profile book issued by the Ministry of Health of the Republic of Indonesia. This research will be analyzed using three network architecture models, 3-15-1, 3-20-1 and 3-25-1. Based on the analysis of the three models used, the results show that the 3-15-1 model is the best because it produces a higher accuracy level than the other two models, which is 88%. It can be concluded that the Levenberg-Marquardt technique with the 3-15-1 model is quite suitable for forecasting new cases of HIV in Indonesia. Based on the prediction results, the number of new HIV cases by the province in Indonesia at the end of 2022 decreased significantly compared to 2021, which was 24668 compared to 36902 or reduced by around 12 thousand cases.

Downloads

Download data is not yet available.

References

P. N. Fauziah, M. Mahmudah, and A. Gamarani, “Hasil Pemeriksaan Kadar Cd4 Dan TCM Genexpert Mtb Pada Pasien Ko-infeksi TB-HIV Di Rsud Budhi Asih Jakarta,” Anakes : Jurnal Ilmiah Analis Kesehatan, vol. 6, no. 2, pp. 144–150, 2020.

L. A. Sari and Dasuki, “Respon Sosial Penderita HIV / AIDS di Yayasan Kanti Sehati Sejati Terhadap Dukungan Keluarga,” Jurnal Endurance : Kajian Ilmiah Problema Kesehatan, vol. 5, no. 2, pp. 284–293, 2020.

Kemenkes RI, Profil Kesehatan Indonesia Tahun 2021. Jakarta: Kementerian Kesehatan Republik Indonesia, 2021.

D. H. Jayani, “Kasus HIV Indonesia Turun, Namun AIDS Meningkat,” databoks, 2021. [Online]. Available: https://databoks.katadata.co.id/datapublish/2021/10/08/kasus-hiv-indonesia-turun-namun-aids-meningkat. [Accessed: 02-Aug-2022].

D. Gong, J. Feng, W. Xiao, and S. Sun, “Spectral Reconstruction Based on Bayesian Regulation Neural Network,” in Smart Innovation, Systems and Technologies, vol. 179, R. Kountchev, S. Patnaik, J. Shi, and M. N. Favorskaya, Eds. Springer, 2019, pp. 77–85.

I. C. Saragih, D. Hartama, and A. Wanto, “Prediksi Perkembangan Jumlah Pelanggan Listrik Menurut Pelanggan Area Menggunakan Algoritma Backpropagation,” Building of Informatics, Technology and Science (BITS), vol. 2, no. 1, pp. 48–54, 2020.

M. Syafiq, D. Hartama, I. O. Kirana, I. Gunawan, and A. Wanto, “Prediksi Jumlah Penjualan Produk di PT Ramayana Pematangsiantar Menggunakan Metode JST Backpropagation,” JURIKOM (Jurnal Riset Komputer), vol. 7, no. 1, p. 175, 2020.

N. L. W. S. R. Ginantra, M. A. Hanafiah, A. Wanto, R. Winanjaya, and H. Okprana, “Utilization of the Batch Training Method for Predicting Natural Disasters and Their Impacts,” IOP Conf. Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012022, 2021.

A. Perdana, S. Defit, and A. Wanto, “Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil,” Jurnal Sistem Informasi Bisnis, vol. 01, no. 11, pp. 34–42, 2021.

N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.

A. Wanto, S. Defit, and A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 254–264, 2021.

V. V. Utari, A. Wanto, I. Gunawan, and Z. M. Nasution, “Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation,” Journal of Computer System and Informatics (JoSYC, vol. 2, no. 3, pp. 271–279, 2021.

R. Puspadini, A. Wanto, and N. Arminarahmah, “Penerapan ML dengan Teknik Bayesian Regulation untuk Peramalan,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 3, pp. 147–155, 2022.

N. Arminarahmah, S. D. Rizki, O. A. Putra, U. Islam, K. Muhammad, and A. Al, “Performance Analysis and Model Determination for Forecasting Aluminum Imports Using the Powell-Beale Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 5, no. 5, pp. 624–632, 2022.

N. L. W. S. R. Ginantra, A. D. GS, S. Andini, and A. Wanto, “Pemanfaatan Algoritma Fletcher-Reeves untuk Penentuan Model Prediksi Harga Nilai Ekspor Menurut Golongan SITC,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 679–685, 2022.

Y. Andriani, A. Wanto, and H. Handrizal, “Jaringan Saraf Tiruan dalam Memprediksi Produksi Kelapa Sawit di PT. KRE Menggunakan Algoritma Levenberg Marquardt,” Prosiding Seminar Nasional Riset Information Science (SENARIS), vol. 1, no. September, pp. 249–259, 2019.

A. Wanto et al., “Levenberg-Marquardt Algorithm Combined with Bipolar Sigmoid Function to Measure Open Unemployment Rate in Indonesia,” in The 3rd International Conference ofComputer, Environment, Agriculture, Social Science, Health Science, Engineering andTechnology (ICEST), 2021, no. 1, pp. 22–28.

W. T. C. Gultom, A. Wanto, I. Gunawan, M. R. Lubis, and I. O. Kirana, “Application ofThe Levenberg Marquardt Method In Predict The Amount of Criminality in Pematangsiantar City,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 21–29, 2021.

M. Zunaidi, A. H. Nasyuha, and S. M. Sinaga, “Penerapan Data Mining Untuk Memprediksi Pertumbuhan Jumlah Penderita Human Immunodeficiency Virus (HIV) Menggunakan Metode Multiple Linier Regression (Studi Kasus Dinas Kesehatan Provinsi Sumatera Utara),” J-SISKO TECH (Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD), vol. 3, no. 1, pp. 137–147, 2020.

P. Parulian et al., “Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

I. M. Muhamad, S. A. Wardana, A. Wanto, and A. P. Windarto, “Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera,” Journal of Informatics, Electrical and Electronics Engineering, vol. 1, no. 4, pp. 126–134, 2022.

E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

R. Sinaga, M. M. Sitomorang, D. Setiawan, A. Wanto, and A. P. Windarto, “Akurasi Algoritma Fletcher-Reeves untuk Prediksi Ekspor Karet Remah Berdasarkan Negara Tujuan Utama,” Journal of Informatics Management and Information Technology, vol. 2, no. 3, pp. 91–99, 2022.

Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.

M. Mahendra, R. C. Telaumbanua, A. Wanto, and A. P. Windarto, “Akurasi Prediksi Ekspor Tanaman Obat , Aromatik dan Rempah-Rempah Menggunakan Machine Learning,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 6, pp. 207–215, 2022.

W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, Jul. 2019.

S. Setti and A. Wanto, “Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World,” JOIN (Jurnal Online Informatika), vol. 3, no. 2, pp. 110–115, 2018.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Peramalan Jumlah Kasus Baru HIV Menurut Provinsi Menggunakan Machine Learning dengan Teknik Levenberg-Marquardt

Dimensions Badge
Article History
Submitted: 2022-08-23
Published: 2022-08-30
Abstract View: 161 times
PDF Download: 119 times
Section
Articles