Penerapan Algoritma Bayesian Regulation untuk Estimasi Posisi Cadangan Devisa Indonesia
Abstract
Foreign exchange reserves need to be predicted because it is a significant monetary indicator to show the strength or weakness of a country's economic fundamentals. Therefore, the purpose of this study is to estimate the position of Indonesia's foreign exchange reserves at the end of 2022 and 2023 so that the government has benchmarks and information in determining the right economic policy so that the position of foreign exchange reserves remains stable. The estimation algorithm used in this study is the Bayesian Regulation algorithm, one of the Artificial Neural Network algorithms. The research data used is data on the position of Indonesia's foreign exchange reserves (US$ million) obtained from the economic reports of Bank Indonesia. This research will be analyzed using three network architecture models 4-9-1, 4-18-1, and 4-27-1. Based on the analysis of the three models used, the results show that the 4-27-1 model is the best because it has a lower Mean Square Error (MSE) value of 0.00203297. Another benchmark is seen from more minor epochs (iterations) and faster times than the other two models, even though they both produce a 100% accuracy rate. Thus, it can be concluded that the Bayesian Regulation algorithm is good enough to estimate the position of foreign exchange reserves using the 4-27-1 model. Based on the prediction results, the part of Indonesia's foreign exchange reserves at the end of 2022 and 2023 slightly decreased compared to 2021.
Downloads
References
D. L. Syukuriyah and L. R. Indrawati, “Analisis Faktor-Faktor Yang Mempengaruhi Cadangan Devisa Di Indonesia (Periode Tahun 1991-2020),” Jurnal Kajian Ekonomi dan Kebijakan Publik, vol. 7, no. 1, pp. 81–91, 2022.
Diah Ayu Caroline, B. Ismanto, and D. S. Sitorus, “Pengaruh Nilai Tukar Rupiah dan Inflasi Terhadap Cadangan Devisa Periode Tahun 1989-2019,” Ecodunamika : Jurnal Pendidikan Ekonomi, vol. 4, no. 1, pp. 1–6, 2021.
W. S. Sari, A. M. Hidayah, F. N. Hidayati, and M. Arista, “Analisis Pengaruh Kurs Dolar Amerika Serikat Dan BI Rate Terhadap Cadangan Devisa Indonesia,” Ecodunamika : Jurnal Pendidikan Ekonomi, vol. 4, no. 1, pp. 1–16, 2021.
F. Astuty, “Pengaruh Produk Domestik Bruto, Ekspor Dan Kurs Terhadap Cadangan Devisa Di Indonesia,” JPEK (Jurnal Pendidikan Ekonomi dan Kewirausahaan), vol. 4, no. 2, pp. 301–313, 2020.
H. Juliansyah, P. Moulida, and A. Apridar, “Analisis Faktor-faktor Yang Mempengaruhui Cadangan Devisa Indonesia Bukti (Kointegrasi dan Kausalitas),” Jurnal Ekonomi Regional Unimal, vol. 3, no. 2, pp. 32–46, 2020.
L. L. Khusnatun and D. M. Hutajulu, “Analisis Faktor-Faktor Yang Mempengaruhi Cadangan Devisa Indonesia,” Ekono Insentif, vol. 15, no. 2, pp. 79–92, 2021.
E. Haryono, “Cadangan Devisa Juli 2022 Tetap Tinggi,” Informasi tentang Bank Indonesia, 2022. [Online]. Available: https://www.bi.go.id/id/publikasi/ruang-media/news-release/Pages/sp_2420422.aspx. [Accessed: 02-Aug-2022].
D. Gong, J. Feng, W. Xiao, and S. Sun, “Spectral Reconstruction Based on Bayesian Regulation Neural Network,” in Smart Innovation, Systems and Technologies, vol. 179, R. Kountchev, S. Patnaik, J. Shi, and M. N. Favorskaya, Eds. Springer, 2019, pp. 77–85.
T. Afriliansyah et al., “Implementation of Bayesian Regulation Algorithm for Estimation of Production Index Level Micro and Small Industry,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
P. Setiaji et al., “Best Model and Performance of Bayesian Regularization Method for Data Prediction,” Journal of Physics: Conference Series, vol. 1933, no. 1, 2021.
T. Afriliansyah et al., “Implementation of Bayesian Regulation Algorithm for Estimation of Production Index Level Micro and Small Industry,” Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012027, 2019.
R. Puspadini, A. Wanto, and N. Arminarahmah, “Penerapan ML dengan Teknik Bayesian Regulation untuk Peramalan,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 3, pp. 147–155, 2022.
B. Indonesia, “Posisi Cadangan Devisa (Juta US$),” Badan Pusat Statistik, 2022. [Online]. Available: https://www.bps.go.id/indicator/13/1091/1/posisi-cadangan-devisa.html. [Accessed: 02-Aug-2022].
N. L. W. S. R. Ginantra, A. D. GS, S. Andini, and A. Wanto, “Pemanfaatan Algoritma Fletcher-Reeves untuk Penentuan Model Prediksi Harga Nilai Ekspor Menurut Golongan SITC,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 679–685, 2022.
P. Parulian et al., “Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters,” in Journal of Physics: Conference Series, 2019, vol. 1255, no. 1.
E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” in Journal of Physics: Conference Series, 2019, vol. 1255, no. 1.
Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.
W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, 2019.
N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.
M. F. Rozi, D. Hartama, I. P. Sari, R. Dewi, and Z. A. Siregar, “Backpropagation Model in Predicting the Location of Prospective Freshman Schools for Promotion Optimization,” JOMLAI: Journal of Machine Learning and Artificial Intelligence, vol. 1, no. 1, pp. 23–30, 2022.
N. Arminarahmah, S. D. Rizki, O. A. Putra, U. Islam, K. Muhammad, and A. Al, “Performance Analysis and Model Determination for Forecasting Aluminum Imports Using the Powell-Beale Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 5, no. 5, pp. 624–632, 2022.
A. Wanto, S. Defit, and A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 254–264, 2021.
A. Perdana, S. Defit, and A. Wanto, “Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil,” Jurnal Sistem Informasi Bisnis, vol. 01, no. 11, pp. 34–42, 2021.
S. Setti and A. Wanto, “Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World,” JOIN (Jurnal Online Informatika), vol. 3, no. 2, pp. 110–115, 2018.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma Bayesian Regulation untuk Estimasi Posisi Cadangan Devisa Indonesia
Pages: 205-211
Copyright (c) 2022 Siti Aisyah, Zulkifli Zulkifli, Pandu Adi Cakranegara

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















