Peningkatan Akurasi Prediksi Stok Bahan Baku Furnitur Menggunakan Algoritma Random Forest Regressor Berbasis Web


  • Ahmad Nafi’uzzahidi * Mail Universitas Islam Nahdlatul Ulama Jepara, Jepara, Indonesia
  • Gentur Wahyu Nyipto Wibowo Universitas Islam Nahdlatul Ulama Jepara, Jepara, Indonesia
  • Sarwido Sarwido Universitas Islam Nahdlatul Ulama Jepara, Jepara, Indonesia
  • (*) Corresponding Author
Keywords: Random Forest; Stock Prediction; Raw Material Management; Furniture Industry; Machine Learning

Abstract

This study aims to address the uncertainty of raw material inventory in the furniture industry through the implementation of the Random Forest Regressor machine learning algorithm. The primary problem addressed is demand fluctuation, which frequently leads to stock management inefficiencies, including overstocking or material shortages that disrupt production processes. The research method employs a quantitative approach with an experimental design, developing a web-based system using the Flask framework and MySQL database. The data sample includes historical sales transaction records and Bill of Materials (BOM) data for furniture products, such as dining tables and minimalist chairs. Prior to modeling, the data underwent a preprocessing stage comprising data cleaning, handling missing values, and normalization to minimize the impact of noise on transaction data. Data collection was conducted through the extraction of internal databases, which were then processed through feature engineering stages based on temporal trends. The results demonstrate that the Random Forest model can predict future raw material requirements with high accuracy, evidenced by a coefficient of determination ($R^2$) of 0.84 and a Mean Absolute Error (MAE) of 5.4.5 These findings prove that a data-driven approach provides more precise stock requirement estimations than conventional methods. In conclusion, the integration of this predictive technology offers practical contributions to accelerating managerial decision-making and optimizing operational efficiency in the medium-scale manufacturing sector. The implications of this study support the theoretical development of artificial intelligence-based decision support systems in supply chain management.

Downloads

Download data is not yet available.

References

S. Pliszczuk, J. Kozłowski, and P. Kaczmarek, “Demand forecasting in manufacturing systems using machine learning techniques,” Appl. Sci., vol. 11, no. 9, 2021, doi: 10.3390/app11094231.

M. S. Hosseini, S. H. Mirzamohammadi, and A. Rahmani, “Machine learning-based predictive maintenance and demand forecasting in smart manufacturing systems,” J. Manuf. Process., vol. 83, pp. 123–134, 2025, doi: 10.1016/j.jmapro.2024.12.005.

A. Chen, Y. Li, and X. Zhang, “Data-driven decision making in manufacturing systems: A review,” J. Manuf. Syst., vol. 68, 2023, doi: 10.1016/j.jmsy.2023.02.004.

S. Polo-Triana, J. C. Gutierrez, and J. Leon-Becerra, “Integration of Machine Learning in the Supply Chain for Decision Making: A Systematic Literature Review,” J. Ind. Eng. Manag., vol. 17, no. 2, pp. 344–372, 2024, doi: 10.3926/jiem.6403.

R. Raju, S. Kumar, and P. Singh, “Comparative analysis of machine learning algorithms for demand forecasting,” Int. J. Prod. Econ., 2022, doi: 10.1016/j.ijpe.2021.108307.

J. Gomez-Rocha and N. Hernandez-Gress, “Production forecasting using random forest models,” Expert Syst. Appl., vol. 168, 2021, doi: 10.1016/j.eswa.2020.114256.

J. Park, H. Kim, and J. Yoo, “Comparative evaluation of ensemble learning methods for industrial demand forecasting,” Comput. Ind. Eng., vol. 185, p. 109987, 2024, doi: 10.1016/j.cie.2024.109987.

Z. N. Jawad and B. Villányi, “Designing Predictive Analytics Frameworks for Supply Chain Quality Management: A Machine Learning Approach to Defect Rate Optimization,” Platforms, vol. 3, no. 2, p. 6, 2025, doi: 10.3390/platforms3020006.

L. Vanneschi and S. Silva, “Introduction to machine learning,” in Lectures on Intelligent Systems, Springer, 2023, pp. 115–148.

K. Kurasova and V. Marcinkevicius, “Application of random forest for regression analysis,” Inf. Technol. Control, vol. 50, no. 1, 2021, doi: 10.5755/j01.itc.50.1.26417.

M. Andersson and E. Siminos, “Robust demand prediction using ensemble learning,” Procedia CIRP, vol. 107, 2023, doi: 10.1016/j.procir.2022.05.012.

I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2021.

A. Mehmood and P. Zhang, “Intelligent material requirement prediction using data fusion and Random Forests,” Int. J. Prod. Res., vol. 62, no. 7, pp. 2055–2072, 2024, doi: 10.1080/00207543.2023.2225157.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 2023.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Springer, 2021.

A. H. Makin and M. I. Abdullah, “Demand prediction for perishable products using machine learning regression techniques: A narrative review,” in IEEE International Conference on Artificial Intelligence and Machine Learning, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10948994/

M. C. Dinata and S. Suharjito, “Materials inventory optimization using various forecasting techniques and purchasing quantity in packaging industry,” J. Ind. Eng. Manag., vol. 17, no. 2, pp. 201–215, 2024, [Online]. Available: http://www.jiem.org/index.php/jiem/article/view/7032

M. Aci and D. Yergök, “Demand forecasting for food production using machine learning algorithms: A case study of university refectory,” Tech. Gaz., vol. 30, no. 1, pp. 45–52, 2023, [Online]. Available: https://hrcak.srce.hr/file/446387

A. Masoumi and J. Bond, “Big data analytics in manufacturing systems,” J. Ind. Inf. Integr., vol. 30, 2025, doi: 10.1016/j.jii.2024.100420.

S. Garcia, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining. Springer, 2021.

M. Kuhn and K. Johnson, Applied Predictive Modeling. Springer, 2022.

Y. Zhang and L. Wang, “Machine learning-based material requirement prediction,” Comput. Ind. Eng., vol. 162, 2021, doi: 10.1016/j.cie.2021.107736.

B. T. Nguyen, T. H. Pham, and Y. Lee, “A hybrid LSTM–Random Forest model for inventory demand forecasting in manufacturing supply chains,” Expert Syst. Appl., vol. 229, p. 120826, 2024, doi: 10.1016/j.eswa.2023.120826.

P. Christifan, R. Lestari, and H. Prabowo, “Prediction of inventory needs using machine learning,” J. Manuf. Technol. Manag., vol. 33, no. 4, 2022, doi: 10.1108/JMTM-10-2021-0413.

S. Wang, J. Wan, D. Li, and C. Zhang, “Implementing smart factory of Industrie 4.0,” Int. J. Distrib. Sens. Networks, vol. 12, no. 1, 2021, doi: 10.1177/1550147715614987.

M. Javaid, A. Haleem, and R. Singh, “Industry 4.0 applications in manufacturing,” J. Ind. Integr. Manag., vol. 6, no. 2, 2021, doi: 10.1142/S2424862221500121.

E. Ayvaz, “Managing costs from a supply chain cost management perspective,” G. Kiral M. Ozkan eds, pp. 65–84, 2024.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Peningkatan Akurasi Prediksi Stok Bahan Baku Furnitur Menggunakan Algoritma Random Forest Regressor Berbasis Web

Dimensions Badge
Article History
Submitted: 2026-01-03
Published: 2026-01-21
Abstract View: 73 times
PDF Download: 39 times
How to Cite
Nafi’uzzahidi, A., Wibowo, G., & Sarwido, S. (2026). Peningkatan Akurasi Prediksi Stok Bahan Baku Furnitur Menggunakan Algoritma Random Forest Regressor Berbasis Web. Journal of Information System Research (JOSH), 7(2), 318-329. https://doi.org/10.47065/josh.v7i2.9095
Section
Articles