Sentiment Analysis on X, TikTok, and Instagram on Indonesian Capital relocation using Support Vector Machine
Abstract
This study examines public sentiment toward Indonesia’s new capital city, Ibu Kota Nusantara (IKN), across three major social media platforms: X, TikTok, and Instagram. The research aims to identify how public perceptions differ across platforms and to understand their implications for policy communication. A total of approximately 6,000 user comments collected up to March 2025 were processed through standard text-mining procedures, including cleaning, tokenization, stop-word removal, and stemming. The text data were converted into numerical features using the Term Frequency–Inverse Document Frequency (TF-IDF) technique and classified using a linear Support Vector Machine (SVM) model. Model evaluation with a 20% hold-out test set yielded an accuracy of 90.23% and a macro F1-score of 0.8905. The analysis shows that overall sentiment toward IKN is predominantly positive, with Instagram and TikTok generating more supportive narratives, while X displays a higher concentration of critical or negative comments. These findings highlight significant platform-specific differences that can inform more effective public communication strategies regarding the IKN project.
Downloads
References
“Asosiasi Penyelenggara Jasa Internet Indonesia.” Accessed: Dec. 28, 2025. [Online]. Available: https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang
M. K. Saraswati and E. A. W. Adi, “Pemindahan Ibu Kota Negara Ke Provinsi Kalimantan Timur Berdasarkan Analisis SWOT,” JISIP (Jurnal Ilmu Sos. dan Pendidikan), vol. 6, no. 2, pp. 4042–4052, 2022, doi: 10.58258/jisip.v6i2.3086.
A. Yusuf, A. Rizani, R. Fitri, K. N. P. Pamungkas, and W. A. Saputra, “Sentimen Positif Atau Negatif: Perspektif Masyarakat Terhadap Pemindahan Ibu Kota Negara,” J. Masy. Indones., vol. 50, no. 2, pp. 277–300, 2024, doi: 10.55981/jmi.2024.8842.
S. Rihastuti, A. Rosyidi, A. Surakarta, and R. Forest, “PROGRES PEMBANGUNAN IKN DENGAN METODE RANDOM FOREST,” J. Comput. Sci. Technol., vol. 5, no. 1, pp. 19–23, 2025, [Online]. Available: https://doi.org/10.54840/jcstech.v5i1.345
N. Istamala, N. Azizah, O. Nurahim, and D. Daryono, “Opini Publik Berdasarkan Teori Agenda Setting Pada Proses Perencanaan Pemindahan IKN,” J. Manaj. Sos. Ekon., vol. 4, no. 2, pp. 74–87, 2024, [Online]. Available: https://doi.org/10.51903/dinamika.v4i2.517
A. M. Siregar, “Analisis Sentimen Pindah Ibu Kota Negara (IKN) Baru pada Twitter Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM),” Fakt. Exacta, vol. 16, no. 3, pp. 170–181, 2023, doi: 10.30998/faktorexacta.v16i3.16703.
K. T. Amazio, “PERBANDINGAN NAÏVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE PADA ANALISIS SENTIMEN NETIZEN X # KABURAJADULU COMPARISON BETWEEN NAÏVE BAYES CLASSIFIER AND SUPPORT,” Semin. Nas. Mhs. Fak. Teknol. Inf., vol. 4, no. September, pp. 389–397, 2025, [Online]. Available: https://journal.stiestekom.ac.id/index.php/dinamika/article/view/517
I. Kamindang, M. Amijaya, and F. Ilmu Sosial dan Politik, “Tiktok Sebagai Media Komunikasi Politik Aktor Partai Politik Di Kota Palu,” J. Ilmu Komun. UHO J. Penelit. Kaji. Ilmu Sos. dan Inf., vol. 9, no. 1, pp. 1–15, 2024, [Online]. Available: http://jurnalilmukomunikasi.uho.ac.id/index.php/journal/indexDOI:http://dx.doi.org/10.52423/jikuho.v9i1.151
G. A. Saputri and D. Alita, “Analisis Sentimen Twitter Terhadap Pemindahan Ibu Kota Negara Menggunakan Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 9, no. 3, pp. 213–223, 2024, doi: 10.30591/jpit.v9i3.6612.
A. Suharman, M. K. Sulaeman, T. Industri, U. Muhammadiyah, and P. Hamka, “Analisis Sentimen Pengguna Aplikasi Livin ’ by Mandiri Menggunakan Metode Support Vector Machine ( SVM ) dengan Ekstraksi Fitur TF-IDF dan Word2Vec User Sentiment Analysis of the Livin ’ by Mandiri Application Using the Support Vector Machine ( SVM )” JPTI (Jurnal Pendidikan dan Teknologi Indonesia) vol. 5, no. 8, pp. 2201–2212, 2025, [Online]. Available: https://doi.org/10.52436/1.jpti.941
S. Andini, R. Kurniawan, S. Anwar, and K. Cirebon, “Analisis Sentimen Pengguna X Mengenai Opini,” JITET (Jurnal Inform. dan Tek. Elektro Ter., vol. 13, no. 2, pp. 665–671, 2025, [Online]. Available: https://journal.eng.unila.ac.id/index.php/jitet/article/view/6299
D. Pateman, T. F. Prasetyo, and H. Sujadi, “Sentiment Analysis of Government on Tiktok and X Platforms With Svm and Smote Approach,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 4, pp. 900–908, 2025, doi: 10.33480/jitk.v10i4.6645.
B. Setiawan, “A Review of Sentiment Analysis Applications in Indonesia Between 2023-2024,” J. Inf. Eng. Educ. Technol., vol. 8, no. 2, pp. 71–83, 2025, doi: 10.26740/jieet.v8n2.p71-83.
D. Haliza and M. Ikhsan, “Sentiment Analysis on Public Perception of the Nusantara Capital on Social Media X Using Support Vector Machine (SVM) and K-Nearest Neighbor (K-NN) Methods,” J. Appl. Informatics Comput., vol. 9, no. 3, pp. 716–723, 2025, doi: 10.30871/jaic.v9i3.9318.
E. W. P. Hanifah Afkar Nabila, “PERBANDINGAN ALGORITMA MACHINE LEARNING: SVM, RANDOM FOREST, DAN XGBOOST UNTUK PREDIKSI STROKE,” RABIT J. Teknol. dan Sist. Inf. Univrab, vol. 10, no. 2, pp. 1098–1110, 2025, [Online]. Available: https://jurnal.univrab.ac.id/index.php/rabit/article/view/6444
N. Hadi and D. Sugiarto, “Analisis Sentimen Pembangunan IKN pada Media Sosial X Menggunakan Algoritma SVM, Logistic Regression dan Naïve Bayes,” J. Inform. J. Pengemb. IT, vol. 10, no. 1, pp. 37–49, 2025, doi: 10.30591/jpit.v10i1.7106.
A. Setiawan and R. R. Suryono, “Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes,” Edumatic J. Pendidik. Inform., vol. 8, no. 1, pp. 183–192, 2024, doi: 10.29408/edumatic.v8i1.25667.
Y. R. Dewi, N. W. S. Saraswati, M. O. E. Monny, I. B. G. Sarasvananda, and I. G. Andika, “Sentiment Analysis of the Relocation of the National Capital on Social Media X,” Sinkron, vol. 9, no. 2, pp. 625–636, 2025, doi: 10.33395/sinkron.v9i2.14622.
A. Cahya, S. Zamani, Y. Nuryamin, and A. Priyatna, “Analisis Sentimen Pengguna TikTok tentang Pembangunan IKN Menggunakan Algoritma Naive Bayes dan Decision Tree,” J. Nas. Teknol. Komput., vol. 5, pp. 1112–1123, 2025, [Online]. Available: https://publikasi.hawari.id/index.php/jnastek/article/view/323
M. D. R. C. Priyanto, Azahari, and M. I. Sa’ad, “Analisis Sentimen Terhadap Kontroversi Pembangunan IKN di Media Sosial Twitter Menggunakan Metode Naïve Bayes,” BIT (Bulletin Inf. Technol., vol. 6, no. 2, pp. 97–108, 2025, doi: 10.47065/bit.v5i2.1993.
C. Huda and M. Betty Yel, “Analisa Sentimen Tentang Ibu Kota Nusantara (IKN) Dengan Menggunakan Algoritma K-Nearest Neighbors (KNN) dan Naïve Bayes,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 126–130, 2024, doi: 10.55338/jikomsi.v7i1.2846.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Sentiment Analysis on X, TikTok, and Instagram on Indonesian Capital relocation using Support Vector Machine
Pages: 349-359
Copyright (c) 2026 Syawalian Rais Dwi Jayanto, Suprihadi Suprihadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















