Implementasi YOLO (You Only Look Once) untuk Klasifikasi Kesegaran Daging Ayam Berdasarkan Citra Digital
Abstract
Manual assessment of chicken meat freshness is prone to subjectivity, limited sensory perception, and inconsistent environmental conditions, leading to inaccuracy in freshness determination and potential risks to consumer health and safety. The quality of chicken meat that is not properly maintained can negatively impact consumer health and reduce trust in food businesses. This study aims to develop a chicken meat freshness classification system using the Convolutional Neural Network (CNN) algorithm with the YOLOv8 model approach. The dataset of fresh and non-fresh chicken meat images was obtained through manual documentation and processed using Roboflow platform for augmentation and data splitting. The CNN model was trained using YOLOv8 with a configuration of 50 epochs and an image size 416x416 pixels. The model was then implemented into a web-based application system using the Streamlit framework. The classification result are presented visually (bounding box and class label), along with an automatic conclusion and confidence score that the YOLOv8-based CNN model can accurately classify chicken meat freshness with an accuracy of 98,71%, demonstrating its potential as a rapid and objective food quality assessment tool.
Downloads
References
C. Hari Wibowo and S. Budi Wahjuningsih dan Anisa Rachma Sari, “Penyuluhan Kriteria Daging Ayam Yang Sehat Dan Berkualitas Pada Kelompok Ibu-Ibu PKK RT 02 RW 08 Kelurahan Tlogosari Kulon, Semarang,” Jurnal Tematik, vol. 3, no. 1, pp. 2775–3360, 2021.
M. K. Hidayat and R. Fitriana, “Implementasi K-Means dan K-Medoids Dalam Pengelompokan Wilayah Potensial Produksi Daging Ayam,” Jurnal Teknologi Industri Pertanian, pp. 239–247, Dec. 2022, doi: 10.24961/j.tek.ind.pert.2022.32.3.239.
Z. Febriana, D. Mellinia, and E. Zuliarso, “Implementasi Model CNN Dan Tensorflow Dalam Pendeteksian Jenis Daging Hewan Ternak,” Jurnal Teknologi Informasi dan Terapan (J-TIT, vol. 9, no. 1, pp. 2580–2291, 2022, [Online]. Available: https://doi.org/10/25047/jtit.v9i1.278
F. N. Putra, L. Lestariningsih, V. A. Tricahyo, and F. S. Lestari, “Sistem Grading Kualitas Telur Ayam Konsumsi berdasarkan Citra Kerabang Menggunakan Convolutional Neural,” Briliant: Jurnal Riset dan Konseptual, vol. 9, no. 3, pp. 740–748, Aug. 2024, doi: 10.28926/briliant.v9i3.2014.
I. Ridho Alamsyah, S. Nur Budiman, and U. Mawaddah, “Implementasi Deep Learning Menggunakan Convolutional Neural Network(CNN) untuk Klasifikasi Jenis Ikan Mas Koki (Carassius Auratus) Berdasarkan Ciri Morfologi,” Jurnal Infomedia : Teknik Informatika, Multimedia, dan Jaringan, vol. 10, no. 2, 2025.
S. B. Valentino, “Klasifikasi Kualitas Daging Marmer Berdasarkan Citra Warna Daging Menggunakan Metode Convolutional Neural Network,” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 1, Feb. 2023, [Online]. Available: https://doi.org/10.36040/jati.v7i1.6128
A. Agung Mujiono, E. Yulia Puspaningrum Informatika, U. Pembangunan Nasional, J. Timur Jl Raya Rungkut Madya, and G. Anyar, “Implementasi Model Hybrid CNN-SVP Pada Klasifikasi Kondisi Kesegaran Daging Ayam,” Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 1, 2024, [Online]. Available: https://doi.org/10.36040/jati.v8i1.8855
R. Naturizal, W. Fuadi, and L. Rosnita, “Sistem Pendeteksi Tingkat Kesegaran Daging Ayam pada Citra Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android,” METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi, vol. 8, no. 2, pp. 301–312, Oct. 2024, doi: 10.46880/jmika.Vol8No2.pp301-312.
R. F. Setiawan, M. Roid Zuhdi, B. Ilhan, H. Saputro, and D. Redaksi, “Identifikasi Kesegaran Daging Ayam Menggunakan Metode Convolutioal Neural Networks,” Computer Based Information System Journal, vol. 12, 2024.
S. Lasniari, S. Sanjaya, F. Yanto, and M. Affandes, “Pengaruh Hyperparameter Convolutional Neural Network Arsitektur ResNet-50 Pada Klasifikasi Citra Daging Sapi dan Daging Babi,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 3, Jun. 2022.
S. Sutarman, D. Avianto, and A. P. Wibowo, “Vision-based chicken meat freshness recognition system using RGB color moment features and support vector machine,” Science in Information Technology Letters, vol. 4, no. 2, pp. 65–74, Nov. 2023, doi: 10.31763/sitech.v4i2.1230.
R. C. Sigitta, R. H. Saputra, and F. Fathulloh, “Deteksi Penyakit Tomat melalui Citra Daun menggunakan Metode Convolutional Neural Network,” AVITEC, vol. 5, no. 1, p. 43, Feb. 2023, doi: 10.28989/avitec.v5i1.1404.
S. F. Astari, I. G. P. S. Wijaya, and I. B. K. Widiartha, “Klasifikasi Jenis dan Tingkat Kesegaran Daging Berdasarkan Warna, Tekstur dan Invariant Moment Menggunakan Klasifikasi LDA,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 5, no. 1, pp. 9–19, 2021.
F. Kahar, P. Studi Sistem Komputer, P. Studi Komputerisasi Akuntansi, and S. Catur sakti Kendari, “Klasifikasi Tingkat Kesegaran Daging Sapi di Pasar Mandonga Kota Kendari Menggunakan Arsitektur Deep Learning VCG-16,” Jurnal Sistem Informasi dan Teknik Komputer, vol. 9, no. 2, 2024.
S. Kasanova and D. Udjulawa, “Identifikasi Tingkat Kesegaran Daging Ayam Kampung Menggunakan K-Nearest Neighbor Berdasarkan Warna Daging,” Jurnal Algoritme, vol. 4, no. 2, pp. 63–74, 2024, doi: 10.35957/algoritme.xxxx.
U. Bina Insan, R. Rojab Maulana Akbar, F. Rizal, W. Ja, and far Shudiq, “Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Deteksi Kesegaran Telur Berbasis Android,” Jusikom : Jurnal Sistem Komputer Musi Rawas, vol. 8, no. 1, 2023, [Online]. Available: https://doi.org/10.32767/jusikom.v8i1.1949
D. N. Safitri and M. P. Dewi, “Analisis Preferensi Konsumen dalam membeli Daging Ayam Broiler di Pasar Tradisional Kota Yogyakarta (Studi Kasus ‘Pasar Beringharjo, Kota Yogyakarta’),” Surya Agritama: Jurnal Ilmu Pertanian dan Peternakan, vol. 12, no. 1, pp. 1–13, 2023.
Y. Firdaus Napitupulu, D. Silvia, A. Evalina, and F. Utami, “Efektivitas Ekstrak Antosianin Kulit Buah Naga (Hylocereus polyrhizus) dalam Pengembangan Label Indikator Kesegaran Daging Ayam,” SNIV: Seminar Nasional Inovasi Vokasi, vol. 4, Jun. 2025.
A. A. Irfita and M. Muttaqin, “Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Jenis Jerawat Berbasis Web Menggunakan Streamlit,” Jurnal Nasional Teknologi Komputer, vol. 5, no. 3, pp. 296–311, 2025.
M. I. Ramdani, H. H. Handayani, Y. E. Wicaksana, and T. Al-Mudzakir, “Pengujian Model Klasifikasi Kesegaran Daging Sapi Berbasis GLCM (Gray Level Co-occurrence Matrix) dan Algoritma Machine Learning,” MIND Journal, vol. 10, no. 1, pp. 73–88, Jun. 2025, doi: 10.26760/mindjournal.v10i1.73-88.
D. Aprilianto and E. Rizal, “Klasifikasi Penyakit Kanker Paru Menggunakan Algoritma Random Forest Berbasis Streamlit,” METIK JURNAL, vol. 9, 2025, doi: 10.47002/metik.v9i2.1076.
M. Krichen, “Convolutional Neural Networks: A Survey,” Computers, vol. 12, no. 8, Aug. 2023, doi: 10.3390/computers12080151.
H. Nugroho, G. E. Yuliastuti, and A. Firman, “Klasifikasi Diagnosis Diabetes Melitus Menggunakan Metode Naive Bayes Dengan Seleksi Fitur Backward Elimination,” Jurnal Ilmiah NERO, vol. 8, no. 2, 2023, Accessed: Nov. 26, 2025. [Online]. Available: https://doi.org/10.21107/nero.v8i2.21110
U. Ungkawa and G. Al Hakim, “Klasifikasi Warna pada Kematangan Buah Kopi Kuning menggunakan Metode CNN Inception V3,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 11, no. 3, p. 731, Jul. 2023, doi: 10.26760/elkomika.v11i3.731.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi YOLO (You Only Look Once) untuk Klasifikasi Kesegaran Daging Ayam Berdasarkan Citra Digital
Pages: 222-232
Copyright (c) 2026 Joanna Andini Prabaningrum Pasya, Muhammad Fachrie

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















