Penerapan Naïve Bayes untuk Mengklasifikasikan Sentimen Tidak Seimbang pada Ulasan Aplikasi Berbasis Etika Konsumen
Abstract
This study aims to classify user sentiment toward an ethics-based consumption application using the Multinomial Naïve Bayes algorithm. The application examined contains social and moral content, often provoking complex opinion expressions. A total of 2,000 user reviews were collected from Google Play Store using web scraping and processed through a series of text preprocessing steps: case folding, cleansing, tokenizing, stopword removal, and stemming. The data were converted into numerical form using the Term Frequency–Inverse Document Frequency (TF-IDF) method and labeled into three sentiment categories: positive, neutral, and negative. The evaluation results show that the model achieved a precision of 92%, recall of 100%, and an f1-score of 96% for positive sentiment. However, the model underperformed in recognizing neutral and negative sentiments due to class imbalance. This study contributes to understanding the limitations of probabilistic classification models in handling imbalanced public opinion in socially driven digital spaces.
Downloads
References
F. N. Hasan and R. Ariyansah, “Utilization of the FP-Growth Algorithm on MSME Transaction Data:Recommendations for Small Gifts from The Padang Region,” JURNAL TEKNIK INFORMATIKA, vol. 17, no. 1, pp. 70–78, May 2024, doi: 10.15408/jti.v17i1.37966.
N. Q. Rizkina and F. N. Hasan, “Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes,” Journal of Information System Research (JOSH), vol. 4, no. 4, pp. 1136–1144, Jul. 2023, doi: 10.47065/josh.v4i4.3803.
S. Wulandari and F. N. Hasan, “Analisis Sentimen Masyarakat Indonesia Terhadap Pengalaman Belanja Thrifting Pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 2, p. 768, Apr. 2024, doi: 10.30865/mib.v8i2.7520.
K. Nugroho and F. N. Hasan, “Analisis Sentimen Masyarakat Mengenai RUU Perampasan Aset Di Twitter Menggunakan Metode Naïve Bayes,” SMATIKA JURNAL, vol. 13, no. 02, pp. 273–283, Dec. 2023, doi: 10.32664/smatika.v13i02.899.
A. Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” ZONAsi: Jurnal Sistem Informasi, vol. 5, no. 1, pp. 59–70, Jan. 2023, doi: 10.31849/zn.v5i1.12856.
A. Syakir and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Perilaku Korupsi Pejabat Pemerintah Berdasarkan Tweet Menggunakan Naive Bayes Classifier,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 4, p. 1796, Oct. 2023, doi: 10.30865/mib.v7i4.6648.
A. Wibowo, F. N. Hasan, R. Nurhayati, and A. Wibowo, “Analisis Sentimen Opini Masyarakat Terhadap Keefektifan Pembelajaran Daring Selama Pandemi COVID-19 Menggunakan Naïve Bayes Classifier,” Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, vol. 4, no. 1, pp. 239–248, Jul. 2022, doi: 10.35814/asiimetrik.v4i1.3577.
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 2, pp. 785–795, Jun. 2022, doi: 10.35957/jatisi.v9i2.1835.
A. D. A. Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 2, pp. 636–646, Jun. 2021, doi: 10.35957/jatisi.v8i2.962.
L. Tsabitah, D. A. Karima, Z. D. P. Munaspin, N. M. Titiana, and Fathoni, “Analisis Sentimen Program Makan Siang Gratis Dalam Mendukung SDGS Menggunakan Naïve Bayes,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 4, pp. 6288–6294, May 2025, doi: 10.36040/jati.v9i4.14060.
N. Husni, D. Vionanda, N. Leli, and Syafriandi, “Analisis Sentimen Program MSIB pada Aplikasi X (Twitter) Menggunakan Algoritma Naïve Bayes,” UNP Journal of Statistics and Data Science, vol. 3, no. 2, pp. 189–196, May 2025, doi: 10.24036/ujsds/vol3-iss2/361.
N. Sepriadi, E. Budianita, M. Fikry, and Pizaini, “Analisis Sentimen Review Aplikasi Mypertamina Menggunakan Word Embedding Fasttext Dan Algoritma K-Nearest Neighbor,” INFORMASI (Jurnal Informatika dan Sistem Informasi), vol. 15, no. 1, pp. 91–109, May 2023, doi: 10.37424/informasi.v15i1.222.
A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” SMATIKA JURNAL, vol. 13, no. 01, pp. 117–130, Jul. 2023, doi: 10.32664/smatika.v13i01.750.
N. N. Erlina, C. Trinata, and I. A. Prabadhi, “Analisis Sentimen Ulasan Keimigrasian Pada Google Maps Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 4, pp. 6613–6618, May 2025, doi: 10.36040/jati.v9i4.13820.
A. Hendra and Fitriyani, “Analisis Sentimen Review Halodoc Menggunakan Nai ̈ve Bayes Classifier,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 6, no. 2, pp. 78–89, May 2021, doi: 10.14421/jiska.2021.6.2.78-89.
A. T. Mukti and F. N. Hasan, “Analisis Sentimen Warganet Terhadap Keberadaan Juru Parkir Liar Menggunakan Metode Naive Bayes Classifier,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 1, p. 644, Feb. 2024, doi: 10.30865/mib.v8i1.6982.
N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 1, pp. 47–54, Apr. 2022, doi: 10.57152/malcom.v2i1.195.
P. G. A. Prananda, M. F. Adha, M. Septian, and H. F. Herdiatmoko, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Sentimen Ulasan Pengguna Aplikasi Dramabox Dari Ulasan Play Store,” Journal of Data Analytics, Information, and Computer Science, vol. 2, no. 1, pp. 27–35, Jan. 2025, doi: 10.70248/jdaics.v2i1.1507.
Fathoni, A. P. Maretta, A. N. Kusuma, R. M. Sasmita, A. F. Rizkyllah, and A. Ibrahim, “Perbandingan Metode Naïve Bayes Dan K-Nearest Neighbor Terhadap Analisis Sentimen Ulasan Program Makan Siang Gratis Di Indonesia,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 4, pp. 6385–6390, May 2025, doi: 10.36040/jati.v9i4.14084.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA JURNAL, vol. 10, no. 02, pp. 71–76, Dec. 2020, doi: 10.32664/smatika.v10i02.455.
S. D. Prasetyo, S. S. Hilabi, and F. Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, vol. 10, no. 1, pp. 1–7, Jan. 2023, doi: 10.35134/komtekinfo.v10i1.330.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 1, p. 147, Feb. 2021, doi: 10.25126/jtiik.0813944.
G. Maulani et al., Machine Learning, 1st ed., vol. 1. Cibeusi: CV. Mega Press Nusantara, 2025.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Naïve Bayes untuk Mengklasifikasikan Sentimen Tidak Seimbang pada Ulasan Aplikasi Berbasis Etika Konsumen
Pages: 2294-2306
Copyright (c) 2025 Lingga Lingga, Firman Noor Hasan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















