Identifikasi Citra Motif Kain Tenun Sumbawa (Kre Alang) Menggunakan Metode Convolutional Neural Network Arsitektur MobileNetV2
Abstract
Weaving is a cultural product that reflects the identity of the people who make it, with each region having its patterns, beauty, and distinctive features of its weaving motifs. However, identifying the origin of the region based on woven fabric motifs is often difficult to do due to the unique and diverse characteristics of the motifs. This paper aims to evaluate the performance of the MobileNetV2 architectural model in classifying the motif image of Sumbawa woven fabrics. This model was tested using a dataset of woven fabric images that included various motifs from Sumbawa. The results showed that the model managed to achieve the highest accuracy of 98.14% in the 20th and 25th epochs, with a training time of less than 1 hour. In the training data, the model obtained an accuracy of 99.71% with a loss of 12.99%, which indicates that the model can recognize images with a very high level of accuracy. However, in the validation data, the accuracy of the model was recorded at 92.71% with a loss of 41.98%, which shows that despite the decrease in accuracy, the model is still able to generalize well on data that has never been encountered before. In addition, the model showed excellent results in terms of precision (98.14%), recall (100%), and f1-score (99%). These findings confirm the effectiveness of the MobileNetV2 model in recognizing Sumbawa woven fabric motifs and provide a solid basis for the development of an automated system in supporting the preservation and promotion of regional weaving culture. This paper also shows the importance of model optimization to improve accuracy on validation data and reduce the gap between training data and unseen data. As a next step, the research can be directed to expand the dataset with more variations of motifs and regions to improve the model's ability to generalize to different types of woven fabric motifs.
Downloads
References
S. Purwati, “Motif Dan Corak Kre Alang Dalam Perspektif Nilai Budaya,” Hist. J. Kajian, Penelit. Pengemb. Pendidik. Sej., vol. 3, no. 1, pp. 14–20, 2018, [Online]. Available: http://journal.ummat.ac.id/index.php/historis
N. Hudaningsih, “Pemetaan Dan Analisis Kompetensi Inti Pada Value Chain Kre Alang Sebagai Produk Khas Sumbawa,” J. TAMBORA, vol. 3, no. 3, pp. 115–121, 2019, doi: 10.36761/jt.v3i3.404.
R. Masniadi, A. Asmini, and Y. Asri, “Analisis Pendapatan Usaha Home Industri Kain Tenun (Kre Alang) di Dusun Sameri Desa Poto Kecamatan Moyo Hilir Kabupaten Sumbawa Tahun 2019,” J. Ekon. Bisnis, vol. 7, no. 2, pp. 171–181, 2019, [Online]. Available: http://www.e-journallppmunsa.ac.id/index.php/jeb/article/view/533
Arum Kusumastuti, “Perkembangan Kerajinan Tenun Songket Kere’ Alang Dusun Senampar, Sebewe, Moyo Utara, Sumbawa, Nusa Tenggara Barat Tahun 2010-2015,” Ucv, vol. I, no. 02, pp. 390–392, 2016,
P. Kain and S. K. Alang, “Museum Negeri Ntb,” 2019.
I. A. DLY, J. Jasril, S. Sanjaya, L. Handayani, and F. Yanto, “Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1176–1185, 2023, doi: 10.47065/josh.v4i4.3702.
A. F. Setyawan, R. A. Hasani, and E. R. Arumi, “Sistem Klasifikasi Keanekaragaman Tanaman Pangan Menggunakan Transfer Learning Pendekatan CNN dan Model Arsitektur,” vol. 6, no. 1, pp. 66–75, 2024, doi: 10.47065/josh.v6i1.5577.
S. Zamroni, G. W. Wiriasto, and B. Kanata, “Identifikasi Moncong Sapi Menggunakan Metode Convolution Neural Network ( CNN ),” 2024
M. H. Nashr, M. Fachrurrozi, E. Triningsih, and K. J. Miraswan, “Pengenalan Motif Kain Songket Pada Citra Kamera Smartphone Dengan Beragam Sudut Pandang Menggunakan CNN,” J. Ilmu Komput. dan Teknol. Inf. Univ. Sriwij., vol. 12, no. 01, pp. 22–26, 2020.
I. Cholissodin and A. A. Soebroto, “Ai , Machine Learning & Deep Learning ( Teori & Implementasi ),” no. July 2019, 2021.
L. Hakim, H. R. Rahmanto, S. P. Kristanto, and D. Yusuf, “Klasifikasi Citra Motif Batik Banyuwangi Menggunakan Convolutional Neural Network,” J. Teknoinfo, vol. 17, no. 1, p. 203, 2023, doi: 10.33365/jti.v17i1.2342.
F. Zaelani and Y. Miftahuddin, “Perbandingan Metode EfficientNetB3 dan MobileNetV2 Untuk Identifikasi Jenis Buah-buahan Menggunakan Fitur Daun,” J. Ilm. Teknol. Infomasi Terap., vol. 9, no. 1, pp. 1–11, 2022, doi: 10.33197/jitter.vol9.iss1.2022.911.
M. Harahap, Em Manuel Laia, Lilis Suryani Sitanggang, Melda Sinaga, Daniel Franci Sihombing, and Amir Mahmud Husein, “Deteksi Penyakit Covid-19 Pada Citra X-Ray Dengan Pendekatan Convolutional Neural Network (CNN),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 70–77, 2022, doi: 10.29207/resti.v6i1.3373.
E. Febrywinata, “Pengenalan Dan Klasifikasi Jenis Buah Menggunakan Metode CNN Secara Sederhana Dengan Menggunakan Google Colab,” Juli, vol. 2, no. 4, pp. 185–193, 2024, [Online]. Available: https://doi.org/10.61132/merkurius.v2i4.162
S. Ariessaputra, V. H. Vidiasari, S. M. Al Sasongko, B. Darmawan, and S. Nababan, “Classification of Lombok Songket and Sasambo Batik Motifs Using the Convolution Neural Network (CNN) Algorithm,” Int. J. Informatics Vis., vol. 8, no. 1, pp. 38–44, 2024, doi: 10.62527/joiv.8.1.1386.
R. Mawan, “Klasifikasi motif batik menggunakan Convolutional Neural Network,” Jnanaloka, pp. 45–50, 2020, doi: 10.36802/jnanaloka.2020.v1-no1-45-50.
H. Hambali, M. Mahayadi, and ..., “Classification of Lombok Songket Cloth Image Using Convolution Neural Network Method (Cnn),” Pilar Nusa Mandiri …, no. 85, pp. 149–156, 2021, doi: 10.33480/pilar.v17i2.2705.
N. Arief, W. Putra, D. Septhian, and D. Pratama, “Implementasi Cnn Arsitektur Mobilenetv2 Untuk Klasifikasi Tulisan Aksara Jawa,” Pros. Semin. Nas. Teknol. dan Sains , vol. 3, pp. 298–303, 2024.
G. A. Sandag and J. Waworundeng, “Identifikasi Foto Fashion Dengan Menggunakan Convolutional Neural Network (CNN),” CogITo Smart J., vol. 7, no. 2, pp. 305–314, 2021, doi: 10.31154/cogito.v7i2.340.305-314.
R. Pujiati and N. Rochmawati, “Identifikasi Citra Daun Tanaman Herbal Menggunakan Metode Convolutional Neural Network (CNN),” J. Informatics Comput. Sci., vol. 3, no. 03, pp. 351–357, 2022, doi: 10.26740/jinacs.v3n03.p351-357.
S. Dewi, F. Ramadhani, and S. Djasmayena, “Klasifikasi Jenis Jerawat Berdasarkan Gambar Menggunakan Algoritma CNN (Convolutional Neural Network),” Hello World J. Ilmu Komput., vol. 3, no. 2, pp. 68–73, 2024, doi: 10.56211/helloworld.v3i2.518.
M. Sandler, A. Howard, M. Zhu, and A. Zhmoginov, “Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf,” arXiv, pp. 4510–4520, 2018.
S. Tinggi, M. Informatika, D. Komputer, and N. Mandiri, “TESIS Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Ilmu Komputer ( M . Kom ),” pp. 1–49, 2020.
D. Efendi, J. Jasril, S. Sanjaya, F. Syafria, and E. Budianita, “Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 3, p. 607, 2022, doi: 10.30865/jurikom.v9i3.4176.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Identifikasi Citra Motif Kain Tenun Sumbawa (Kre Alang) Menggunakan Metode Convolutional Neural Network Arsitektur MobileNetV2
Pages: 1227-1236
Copyright (c) 2025 Nandita Dianda, A Sjamsjiar Rachman, Made Sutha Yadnya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).