K-Means Clustering Untuk Mengukur Pengaruh Kompetensi Terhadap Kinerja Pegawai
Abstract
Human resources play an important role in improving organizational performance, including in the North Sumatra Province Youth and Sports Agency (Dispora). This study aims to measure the effect of competence on employee performance using the K-Means Clustering algorithm, known as an unsupervised data clustering method. The dataset consists of 700 employee data with 15 attributes covering technical, managerial, and social competencies. Data were collected through direct surveys and processed using Python with a normalization process through the StandardScaler method to ensure data consistency. The elbow method was used to determine the optimal number of clusters, resulting in five clusters: best performance, very good, and average. The results of the analysis show that the clustering results group employees into five clusters, namely Cluster 0 with 145 employees who have high technical competence, Cluster 1 with 160 employees who excel in social and managerial competence, Cluster 2 with 125 employees who show average competence in all aspects, Cluster 3 with 135 employees who have moderate technical competence but excel in social competence, and Cluster 4 with 135 employees who have great potential for development. This research provides practical benefits in the form of identifying competency patterns for developing group-based training needs, as well as more objective strategic decision-making in human resource management. Thus, this research is expected to support improving employee performance through an effective data-based approach.
Downloads
References
I. Buil, E. Martínez, and J. Matute, “Transformational Leadership and Employee Performance: The Role of Identification, Engagement, and Proactive Personality,” International Journal of Hospitality Management, vol. 77, pp. 64–75, 2019, doi: 10.1016/j.ijhm.2018.06.014.
K. Sendawula, S. N. Kimuli, J. Bananuka, and G. N. Muganga, “Training, Employee Engagement and Employee Performance: Evidence from Uganda’s Health Sector,” Cogent Business and Management, vol. 5, no. 1, pp. 1–12, 2018, doi: 10.1080/23311975.2018.1470891.
D. Marcelina, A. Kurnia, and T. Terttiaavini, “Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering,” MALCOM Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 293–301, 2023, doi: 10.57152/malcom.v3i2.952.
J. Faran and A. Triayudi, “Penerapan Algoritma K-Means Data Mining untuk Clustering Kinerja Karyawan Koperasi,” KLIK Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 4, pp. 2096–2108, 2024, doi: 10.30865/klik.v4i4.1728.
Mudakir, A. T. Zy, and A. S. Sunge, “Penerapan Data Mining untuk Klasifikasi Pengangkatan Karyawan Menggunakan Algoritma K-Means,” Jurnal Informatika Teknologi dan Sains, vol. 5, no. 3, pp. 489–497, 2023, doi: 10.51401/jinteks.v5i3.3369.
I. Cholissodin and A. A. Soebroto, AI, Machine Learning & Deep Learning (Teori & Implementasi), 2021.
T. Wahyono, Fundamental of Python for Machine Learning: Dasar-Dasar Pemrograman Python untuk Machine Learning dan Kecerdasan Buatan, Revisi ed., 2021.
A. Septhiani and H. Hendry, “Analisis Perbandingan Algoritma Supervised Learning untuk Prediksi Kasus Covid-19 di Jakarta,” Jurnal Sains Komputer dan Informatika, vol. 7, no. 2, pp. 583–594, 2023, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jsakti/article/view/668/643.
A. Supriyadi, A. Triayudi, and I. D. Sholihati, “Perbandingan Algoritma K-Means dengan K-Medoids pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 6, no. 2, pp. 229–240, 2021, doi: 10.29100/jipi.v6i2.2008.
I. S. Tinendung and I. Zufria, “Pengelompokan Status Stunting pada Anak Menggunakan Metode K-Means Clustering,” Media Informatika Budidarma, vol. 7, pp. 2014–2023, 2023, doi: 10.30865/mib.v7i4.6908.
W. Rahmansyah, I. Zufria, and M. Fakhriza, “Sistem Pendukung Keputusan Pemilihan SSD Laptop Menggunakan Kombinasi Metode AHP dan SAW,” KLIK Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 2, pp. 1192–1199, 2023, doi: 10.30865/klik.v4i2.1257.
P. Pangestu, S. Maarip, Y. N. Addinsyah, and V. Purwayoga, “Clustering and Trend Analysis of Priority Commodities in the Archipelago Capital Region (IKN) Using a Data Mining Approach,” International Journal of Applied Sciences and Smart Technology, vol. 6, no. 1, pp. 169–182, 2024, doi: 10.24071/ijasst.v6i1.7798.
M. S. Hasibuan, A. H. Lubis, and M. N. Sari, “Perbandingan Algoritma Clustering DBSCAN dan K-Means dalam Pengelompokan Siswa Terbaik,” Jurnal Ilmu Komputer dan Informatika, vol. 5, pp. 301–309, 2024, doi : 10.37373/infotech.v5i2.1457
J. A. Noyari, A. Aprillia, R. G. Munthe, and A. Sutarman, “Optimasi Kinerja Sistem Informasi Manajemen Kampus Menggunakan Teknik Data Mining,” Jurnal Informatika dan Sistem Informasi, vol. 3, no. 1, pp. 52–63, 2024, doi : 10.33050/mentari.v3i1.613
M. Y. Nurzaman and B. N. Sari, “Implementasi K-Means Clustering dalam Pengelompokkan Banyaknya Jumlah Petani Berdasarkan Kecamatan di Provinsi Jawa Barat,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 3, pp. 131–144, 2023, [Online]. Available: http://jurnal.mdp.ac.id.
S. Mutiah, Y. Hasnataeni, A. Fitrianto, and L. M. R. D. Jumansyah, “Perbandingan Metode Klastering K-Means dan DBSCAN dalam Identifikasi Kelompok Rumah Tangga Berdasarkan Fasilitas Sosial Ekonomi di Jawa Barat,” Teorema: Teori dan Riset Matematika, vol. 9, no. 2, pp. 247–260, 2024, [Online]. Available: http://dx.doi.org/10.25157/teorema.v9i2.16290.
S. Xia et al., “Ball K-Means: Fast Adaptive Clustering with No Bounds,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 87–99, 2022, doi: 10.1109/TPAMI.2020.3008694.
H. A. Ulvi and M. Ikhsan, “Comparison of K-Means and K-Medoids Clustering Algorithms for Export and Import Grouping of Goods in Indonesia,” Jurnal dan Penelitian Teknik Informatika, vol. 8, no. 3, pp. 1641–1655, 2024, [Online]. Available: https://doi.org/10.33395/sinkron.v8i3.13815.
D. Arbain, Sriyanto, and J. Triloka, “Perbandingan Kinerja Algoritma K-Medoids dan K-Means untuk Klasifikasi Penyakit Kanker Serviks,” Seminar Nasional Hasil Penelitian dan Pengabdian Masyarakat, no. 93, pp. 118–131, 2023, doi : 10.30865/mib.v5i1.2547.
M. Sulaiman, R. Yudistira, R. Narasati, and R. Herdiana, “Penerapan Data Mining dengan Metode Clustering untuk Menentukan Strategi Peningkatan Penjualan Berdasarkan Data Transaksi,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 6, no. 1, 2024, doi : 10.36499/jinrpl.v6i1.10329
M. Ikhsan, A. Armansyah, and A. A. Tamba, “Implementasi Jaringan Syaraf Tiruan Backpropagation pada Klasifikasi Grade Teh Hitam,” Jurnal Sistem Komputer dan Informatika, vol. 4, no. 2, p. 387, 2022, doi: 10.30865/json.v4i2.5312.
R. R. Asyrofi and R. Asyrofi, “Implementasi Aplikasi Jupyter Notebook sebagai Analisis Kriteria Plagiasi dengan Teknik Semantik,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 2, pp. 627–637, 2023, doi: 10.29100/jipi.v8i2.3699.
M. G. S. Finka, “Implementasi K-Nearest Neighbor (KNN) untuk Klasifikasi Citra Serat Kayu,” Jurnal Ilmu Komputer dan Aplikasi, 2023, doi : 10.56854/jt.v2i3.331.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel K-Means Clustering Untuk Mengukur Pengaruh Kompetensi Terhadap Kinerja Pegawai
Pages: 1421-1432
Copyright (c) 2025 Saidatus Syaqila, M. Fakhriza

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).