Komparasi Metode Random Forest Dan Support Vector Machine (SVM) Untuk Pemodelan Klasifikasi Serangan DDos
Abstract
The Distributed Denial of Service (DDoS) attack is a type of cyberattack that aims to render a service, network, or website inaccessible to legitimate users. This attack not only disrupts services but also causes server crashes by repeatedly sending data packets, commonly referred to as spam. DDoS attacks can be identified as traffic anomalies. The National Cyber and Crypto Agency (BSSN) recorded 403,990,813 traffic anomalies with 347 cases specifically attributed to DDoS attacks. Based on this issue, a model capable of classifying DDoS attacks is necessary. This study employs the Random Forest and Support Vector Machine (SVM) methods through the steps of data collection, dataset loading, data preprocessing, classification modeling, and performance evaluation. In the final stage, the best method between Random Forest and Support Vector Machine is determined. The results indicate that Random Forest achieved an accuracy of 99.9%, whereas Support Vector Machine obtained an accuracy of 97.0%. Therefore, it can be concluded that Random Forest demonstrates better accuracy in classifying DDoS attacks.
Downloads
References
N. S. Dinarti, S. R. Salsabila, dan Y. T. Herlambang, “Dilema Etika dan Moral dalam Era Digital: Pendekatan Aksiologi Teknologi terhadap Privasi Keamanan, dan Kejahatan Siber,” Daya Nas. J. Pendidik. Ilmu-Ilmu Sos. dan Hum., vol. 2, no. 1, hal. 8–16, 2024.
F. Indah, A. Q. Sidabutar, dan N. A. Nasution, “Peran cyber security terhadap keamanan data penduduk negara Indonesia (Studi kasus: Hacker Bjorka),” J. Bid. Penelit. Inform., vol. 1, no. 1, hal. 57–64, 2023.
M. J. Alhafiz, A. Fauzi, A. Dwiansyah, B. R. Indriani, F. M. A. Putra, dan R. R. Ridwani, “Dampak Denial of Service pada Perusahaan Perbankan di Indonesia,” J. Ilmu Multidisplin, vol. 2, no. 1, hal. 114–120, 2023.
R. D. Hapsari dan K. G. Pambayun, “Ancaman cybercrime di indonesia: Sebuah tinjauan pustaka sistematis,” J. Konstituen, vol. 5, no. 1, hal. 1–17, 2023.
M. Ikum, “Implementasi Packet Tracer 8.0 Pada Simulator Pintu Rumah Pintar Berbasis Teknologi Radio Frequency Identification.” Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta, 2024.
S. Muhammad Rifqi Noval, “HUKUM SIBER Kebangkitan Kembali Metaverse Beserta Permasalahan Hukumnya,” 2024.
P. K. Sari dan R. R. Suryono, “Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse,” J. Mnemon., vol. 7, no. 1, hal. 31–39, 2024.
A. F. Nugraha, R. F. A. Aziza, dan Y. Pristyanto, “Penerapan metode Stacking dan Random Forest untuk Meningkatkan Kinerja Klasifikasi pada Proses Deteksi Web Phishing,” J. Infomedia Tek. Inform. Multimed. Jar., vol. 7, no. 1, 2022.
A. Widiyanti dan D. A. Megawaty, “Perbandingan Algoritma K-Nearest Neighbor dan Support Vector Machine Pada Pengenalan Pola Tulisan Tangan,” J. MEDIA Inform. BUDIDARMA, vol. 8, no. 3, hal. 1451–1459, 2024.
B. A. Maulana, M. J. Fahmi, A. M. Imran, dan N. Hidayati, “Analisis Sentimen Terhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM): Sentiment Analysis of Pluang Applications With Naive Bayes and Support Vector Machine (SVM) Algorithm,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, hal. 375–384, 2024.
Ismail et al., “A Machine Learning-Based Classification and Prediction Technique for DDoS Attacks,” IEEE Access, vol. 10, hal. 21443–21454, 2022, doi: 10.1109/ACCESS.2022.3152577.
C. Bagyalakshmi, “DDoS Attack Classification on Cloud Environment Using Machine Learning Techniques with Different Feature Selection Methods,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 5, hal. 7301–7308, 2020, doi: 10.30534/ijatcse/2020/60952020.
Ö. Tonkal, H. Polat, E. Başaran, Z. Cömert, dan R. Kocaoğlu, “Machine learning approach equipped with neighbourhood component analysis for ddos attack detection in software-defined networking,” Electron., vol. 10, no. 11, 2021, doi: 10.3390/electronics10111227.
N. V. Patil, C. R. Krishna, dan K. Kumar, “SSK-DDoS: distributed stream processing framework based classification system for DDoS attacks,” Cluster Comput., vol. 25, no. 2, hal. 1355–1372, 2022, doi: 10.1007/s10586-022-03538-x.
N. Winarti, L. H. Maula, A. R. Amalia, dan N. L. A. Pratiwi, “Penerapan Model Pembelajaran Project Based Learning Untuk Meningkatkan Kemampuan Berpikir Kritis Siswa Kelas III Sekolah Dasar,” J. Cakrawala Pendas, vol. 8, no. 3, hal. 552–563, 2022.
D. P. MAWARDI, “DETEKSI AWAL KLASIFIKASI JENIS PENYAKIT KANKER KULIT DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN) BERBASIS MOBILE APPS.” UNIVERSITAS PGRI SEMARANG, 2024.
Y. Cao, Y. Kang, C. Wang, dan L. Sun, “Instruction Mining: When Data Mining Meets Large Language Model Finetuning,” arXiv Prepr. arXiv2307.06290, 2023.
F. A. Larasati, D. E. Ratnawati, dan B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 6, no. 9, hal. 4305–4313, 2022.
M. M. Mutoffar dan A. Fadillah, “Klasifikasi Kualitas Air Sumur Menggunakan Algoritma Random Forest,” Naratif J. Nas. Riset, Apl. dan Tek. Inform., vol. 4, no. 2, hal. 138–146, 2022, doi: 10.53580/naratif.v4i2.160.
H. Tantyoko, D. K. Sari, dan A. R. Wijaya, “Prediksi potensial gempa bumi Indonesia menggunakan metode random forest dan feature selection,” IDEALIS Indones. J. Inf. Syst., vol. 6, no. 2, hal. 83–89, 2023.
I. S. K. Idris, Y. A. Mustofa, dan I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, hal. 32–35, 2023.
H. S. Wafa, A. I. Hadiana, dan F. R. Umbara, “Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM),” vol, vol. 4, hal. 40–45, 2022.
E. Suryati, S. Styawati, dan A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” J. Teknol. dan Sist. Inf., vol. 4, no. 1, hal. 96–106, 2023.
H. Harnelia, “Analisis Sentimen Review Skincare Skintific Dengan Algoritma Support Vector Machine (Svm),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, 2024.
D. Oktavia, Y. R. Ramadahan, dan M. Minarto, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, hal. 407–417, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Komparasi Metode Random Forest Dan Support Vector Machine (SVM) Untuk Pemodelan Klasifikasi Serangan DDos
Pages: 1471-1478
Copyright (c) 2025 Christoper Michael Lauwl, Husain Husain, Baiq Nadila Nuzululnisa, Hartono Wijaya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).