Penerapan Support Vector Machine untuk Analisis Sentimen pada Google Review Hotel
Abstract
This research aims to analyse customer sentiment towards Grand Rohan Hotel Yogyakarta using Google Reviews. Thus it can be a reference for hotel management to record customer reviews from internet users. Data was collected from user reviews during the period January to September 2024 in the form of 421 data. This research uses the Support Vector Machine (SVM) method to classify sentiment into positive and negative categories. The analysis process includes data collection using web scraping, data cleaning, text weighting using TF-IDF, and visualisation of analysis results. The results show that the SVM method is effective in analysing sentiment with an accuracy rate of 95%. Data visualisation through word clouds and pie charts provides additional insights for hotel management to improve service quality based on customer opinions. This research is implemented in a web application for real-time sentiment monitoring.
Downloads
References
Y. A. Singgalen, “Analisis Sentimen dan Sistem Pendukung Keputusan Menginap di Hotel Menggunakan Metode CRISP-DM dan SAW,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1343–1353, 2023. https://doi.org/10.47065/josh.v4i4.3917
G. Radiena and A. Nugroho, “Analisis Sentimen Berbasis Aspek pada Ulasan Aplikasi KAI Access Menggunakan Metode Support Vector Machine,” J. Pendidik. Teknol. Inf., vol. 6, no. 1, pp. 1–10, 2023. https://doi.org/10.37792/jukanti.v6i1.836
F. M. Sarimole and W. Septian, “Komparasi Analisis Sentimen Masyarakat Terhadap Isu Penundaan Pemilu 2024 pada Twitter dengan Metode Naive Bayes dan Support Vector Machine,” J. Sains dan Teknol., vol. 5, no. 3, pp. 890–899, 2024. https://doi.org/10.55338/saintek.v5i3.2789
F. N. Hidayat and Sugiyono, “Analisis Sentimen Masyarakat Terhadap Perekrutan PPPK pada Twitter dengan Metode Naive Bayes dan Support Vector Machine,” J. Sains dan Teknol., vol. 5, no. 2, pp. 665–672, 2023. https://doi.org/10.55338/saintek.v5i2.1359
S. Ariqoh, M. A. Sunandar, and Y. Muhyidin, “Analisis Sentimen Ppada Produk Cushion di Website Female Daily Menggunakan Metode Support Vector Machine (SVM),” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 2, no. 3, pp. 137–142, 2023. https://doi.org/10.55123/storage.v2i3.2345
A. Handayani and I. Zufria, “Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 53–63, 2023. https://doi.org/10.47065/josh.v5i1.4379
A. Musthafa, D. Muriyatmoko, and A. Fauzan, “Analisis Sentimen Pandangan Masyarakat Terhadap Uji Emisi di Twitter Menggunakan Metode Support Vector Machine,” in Prosiding Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK), 2024, pp. 86–93. Available: https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/450
O. Agnesia, “Analisis Kualitas Informasi Ulasan Pelanggan Grand Rocky Hotel Bukittinggi pada Google Review Terhadap Kepercayaan Pelanggan,” Universitas Muhammadiyah Sumatera Barat, 2023. http://eprints.umsb.ac.id/id/eprint/2085
A. Setiawan and S. Mulyati, “Analisis Sentimen Pengguna Shopeepaylater pada Twitter Menggunakan Metode Support Vector Machine (svm),” Log. J. Ilmu Komput. dan Pendidik., vol. 1, no. 2, pp. 196–202, 2023. https://journal.mediapublikasi.id/index.php/logic/article/download/1407/1437/7273
C. Wulandari, L. Sunardi, and Hasbiana, “Analisis Sentimen Aplikasi Spotify pada Ulasan Pengguna di Google Play Store Menggunakan Metode Support Vector Machine,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 5, pp. 2588–2595, 2024. https://djournals.com/klik/article/download/1762/1023
A. D. Dayani, Yuhandri, and G. W. Nurcahyo, “Analisis Sentimen Terhadap Opini Publik pada Sosial Media Twitter Menggunakan Metode Support Vector Machine,” J. KomtekInfo, vol. 11, no. 1, pp. 1–10, 2024. https://doi.org/10.35134/komtekinfo.v11i1.439
C. F. Hasri and D. Alita, “Penerapan Metode Naive Bayes Classifier dan Support Vector Machine pada Analisis Sentimen Terhadap Dampak Virus Corona di Twitter,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022. https://doi.org/10.33365/jatika.v3i2.2026
D. Toresa, S. R. F. Sitorus, I. Muzdalifah, F. Wiza, and R. Syelly, “Analisis Sentimen Terhadap Ulasan Penggunaan Dompet Digital Dana Mengunakan Metode Klasifikasi Support Vector Machine,” Technologica, vol. 3, no. 2, pp. 64–74, 2024. https://doi.org/10.55043/technologica.v3i2.163
T. P. Lestari, “Analisis Text Mining pada Sosial Media Twitter Menggunakan Metode Support Vector Machine (SVM) dan Social Network Analysis (SNA),” J. Inform. Ekon. Bisnis, vol. 4, no. 3, pp. 65–71, 2022. https://doi.org/10.37034/infeb.v4i3.146
T. Sugihartono and R. R. C. Putra, “Penerapan Metode Support Vector Machine dalam Classifikasi Ulasan Pengguna Aplikasi Mobile JKN,” SKANIKA Sist. Komput. dan Tek. Inform., vol. 7, no. 2, pp. 144–153, 2024. https://doi.org/10.36080/skanika.v7i2.3193
Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine untuk Analisis Sentimen Pengguna Twitter,” JOISM J. Inf. Syst. Manag., vol. 3, no. 1, pp. 16–21, 2021. https://doi.org/10.24076/joism.2021v3i2.558
Jasmarizal, Rahmaddeni, Junadhi, and M. K. Anam, “Penerapan Metode Support Vector Machine untuk Analisis Sentimen Terhadap Produk Skincare,” Indones. J. Comput. Sci., vol. 13, no. 1, pp. 1438–1450, 2024. https://doi.org/10.33022/ijcs.v13i1.3654
Tinaliah, T., & Elizabeth, T, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Teknik Informatika Dan Sistem Informasi)., vol. 9, no. 4, pp. 3436-3442, 2022. https://doi.org/10.35957/jatisi.v9i4.3586
J. A. Aryadi, Y. A. A. Basith, Munawir, and D. A. R. Agustini, “Analisis Data Review Hotel di Google Maps Melalui Text Mining (Studi Kasus : Kabupanten Bandung),” JIKO (Jurnal Inform. dan Komputer), vol. 7, no. 2, pp. 313–319, 2023. https://doi.org/10.26798/jiko.v7i2.938
Y. R. Pradana, A. A. Supianto, and Y. T. Mursityo, “Prediksi Bidang Penelitian dan Rekomendasi Dosen Pembimbing Skripsi Berdasarkan Konten Latar Belakang pada Naskah Proposal Menggunakan Metode Multi-Class Support Vector Machine dan Weighted Product,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, pp. 403–410, 2021. https://doi.org/10.25126/jtiik.2021824511
R. Al Anshari, S. Alam, and M. H. T, “Komparasi Payment Digital untuk Analisis Sentimen Berdasarkan Ulasan di Google Playstore Menggunakan Metode Support Vector Machine,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 2, no. 3, pp. 118–128, 2023. https://doi.org/10.55123/storage.v2i3.2337
A. Muhammadin and I. A. Sobari, “Analisis Sentimen pada Ulasan Aplikasi Kredivo dengan Algoritma SVM Dan NBC,” Reputasi J. Rekayasa Perangkat Lunak, vol. 2, no. 2, pp. 85–91, 2021. https://doi.org/10.31294/reputasi.v2i2.785
E. Wibowo and I. Pratama, “Analisis Sentimen Terhadap Ulasan Hotel Melalui Platform Google Review Menggunakan Metode Stacking,” Jteksis J. Teknol. dan Sist. Inf. Bisnis, vol. 6, no. 4, pp. 774–784, 2024. https://doi.org/10.47233/jteksis.v6i4.1475
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Support Vector Machine untuk Analisis Sentimen pada Google Review Hotel
Pages: 1246-1254
Copyright (c) 2025 Harfin Ibna Pratama, Putri Taqwa Prasetyaningrum

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).