Klasifikasi Ras Kelinci Menggunakan Convolutional Neural Network (CNN) untuk Optimasi Sistem Identifikasi Visual


  • Maasyaril Kirom Mi’Rojul Huda * Mail Universitas Mercu Buana Yogyakarta, Sleman, Indonesia
  • Arita Witanti Universitas Mercu Buana Yogyakarta, Sleman, Indonesia
  • (*) Corresponding Author
Keywords: Classification; Rabbit; Convolutional Neural Network; MobileNetV3; TensorFlow; Farm

Abstract

Rabbits are mammals that come in many varieties with unique and diverse physical characteristics. Differentiating various types of rabbits, especially those with physical similarities and color patterns, is a challenge for some people because of their similar visual appearance. The purpose of this research is to develop a Convolutional Neural Network (CNN)-based rabbit breed classification system using MobileNetV3 architecture. A dataset of 1,500 images of three rabbit breeds (bligon, hyla, and new zealand white) was processed through resizing, augmentation, and normalization to improve data quality. The model was trained using Adam's optimizer with 97% accuracy on the validation data and 90% on the external dataset, showing good generalization ability. These results confirm the effectiveness of CNNs over manual methods in visual pattern recognition, while overcoming time constraints and human error. However, limitations in dataset variations, such as lighting and image capture angle, affect the generalization of the model. This research not only supports the efficiency of livestock management but also shows the great potential of AI application in Indonesia's livestock sector. Development of more diverse datasets and exploration of other model architectures are recommended for future performance improvements.

Downloads

Download data is not yet available.

References

F. Roji, F. R. Hasibuan, A. H. M. Siregar, and I. A. Jupani, “Pengaruh Penggunaan Tepung Daun Belimbing Manis sebagai Substitansi Pakan Kelinci terhadap Berat Badan,” El-Mujtama J. Pengabdi. Masy., vol. 4, no. 1, pp. 25–33, 2023, doi: 10.47467/elmujtama.v4i1.3124.

R. A. Wardani, D. Indrasanti, and S. Sufiriyanto, “Pengaruh Kepadatan Kandang dan Kebersihan terhadap Tingkat Infeksi Koksidiosis Kelinci di Kecamatan Kembaran Kabupaten Banyumas,” J. Ilm. Ilmu-Ilmu Peternak., vol. 24, no. 2, pp. 109–120, 2022, doi: 10.22437/jiiip.v24i2.12751.

E. Wulandari, W. S. Putranto, A. Pratama, H. Yurmiati, and B. K. Mutaqin, “Pelatihan Penanganan dan Pengolahan Daging Kelinci Sebagai Upaya sebagai Alternatif Sumber Protein Hewani di Masa Pandemi COVID-19,” Media Kontak Tani Ternak, vol. 3, no. 4, p. 115, 2022, doi: 10.24198/mktt.v3i4.36747.

N. Nurhidayati and A. Basit, “Pemanfaatan Limbah Ternak Kelinci untuk Pembuatan Pupuk Organik Padat dan Cair,” J. Pengabdi. Kpd. Masy. (Indonesian J. Community Engag., vol. 6, no. 4, pp. 260–266, 2020, doi: 10.22146/jpkm.53322.

K. Berbagai Umur di Kecamatan Kalibagor Kabupaten Banyumas, R. Arif Pramudya, and D. Indrasanti, “Prevalensi Koksidiosis dan Identifikasi Eimeria sp. Pada Prevalence of Coccidiosis and Identification of Eimeria sp. in Rabbits of Various Ages in Kalibagor Subdistrict Banyumas Regency,” 2020.

A. B. Prakosa, Hendry, and R. Tanone, “Implementasi Model Deep Learning Convolutional Neural Network (CNN) Pada Citra Penyakit Daun Jagung Untuk Klasifikasi Penyakit Tanaman,” J. Pendidik. Teknol. Inf., vol. 6, no. 1, pp. 107–116, 2023. [Online]. Available:https://doi.org/10.37792/jukanti.v6i1.919

U. S. Rahmadhani and N. L. Marpaung, “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 169–173, 2023, doi: 10.30591/jpit.v8i2.5229.

N. C. N. N. Algorithm, S. Zamroni, G. W. Wiriasto, and B. Kanata, “Identifikasi Moncong Sapi menggunakan Metode Jaringan Saraf Tiruan Konvolusional ( CNN ) Recognizing Cow Muzzle Patterns using the Convolution Neural,” vol. 13, pp. 2479–2493, 2024. [Online]. Available: https://doi.org/10.32520/stmsi.v13i6.4598

A. S. Riyadi, I. P. Wardhani, and S. Widayati, “Klasifikasi Citra Anjing Dan Kucing Menggunakan Metode Convolutional Neural Network (Cnn),” Semin. Nas. Teknol. Inf. dan Komun. STI&K, vol. 5, no. 1, pp. 307–311, 2021, [Online]. Available: https://ejournal.jak-stik.ac.id. Accesed: Jan. 13, 2025

R. Gunawan, D. M. I. Hanafie, and A. Elanda, “Klasifikasi Jenis Ras Kucing Dengan Gambar Menggunakan Convolutional Neural Network (CNN),” J. Interkom J. Publ. Ilm. Bid. Teknol. Inf. dan Komun., vol. 18, no. 4, pp. 1–8, 2024, doi: 10.35969/interkom.v18i4.318.

D. Tsalsabila Rhamadiyanti and Kusrini, “Analisa Performa Convolutional Neural Network dalam Klasifikasi Citra Apel dengan Data Augmentasi,” J. Kaji. Ilm. Inform. dan Komput., vol. 5, no. 1, pp. 154–162, 2024, doi: 10.30865/klik.v5i1.2023.

M. Malika and E. Widodo, “Implementasi Deep Learning Untuk Klasifikasi Gambar Menggunakan Convolutional Neural Network (Cnn) Pada Batik Sasambo,” Pattimura Proceeding Conf. Sci. Technol., pp. 335–340, 2022, doi: 10.30598/pattimurasci.2021.knmxx.335-340.

B. Yanto, L. Fimawahib, A. Supriyanto, B. H. Hayadi, and R. R. Pratama, “Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network,” INOVTEK Polbeng - Seri Inform., vol. 6, no. 2, p. 259, 2021, doi: 10.35314/isi.v6i2.2104.

R. Firdaus, Joni Satria, and B. Baidarus, “Klasifikasi Jenis Kelamin Berdasarkan Gambar Mata Menggunakan Algoritma Convolutional Neural Network (CNN),” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 267–273, 2022, doi: 10.37859/coscitech.v3i3.4360.

A. Rizky Fadilla and P. Ayu Wulandari, “Literature Review Analisis Data Kualitatif: Tahap PengumpulanData,” Mitita J. Penelit., vol. 1, no. No 3, pp. 34–46, 2023. [Online]. Available: https://jurnalmitita.univpasifik.ac.id/index.php/mjp/article/view/47

R. Prabowo, Y. Heningtyas, machudor Yusman, M. Iqbal, and O. D. E. Wulansari, “Klasifikasi Image Tumbuhan Obat (Keji Beling) Menggunakan Artificial Neural Network,” J. Komputasi, vol. 9, no. 2541–0350, pp. 88–92, 2021, doi: 10.23960/komputasi.v9i2.2868.

A. R. Hidayat and V. Lusiana, “Deteksi Jenis Sayuran dengan Tensorflow Dengan Metode Convolutional Neural Network,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 2, pp. 1032–1040, 2022. http://dx.doi.org/10.30645/j-sakti.v6i2.512

E. Satria Maheswara, A. B. Zuhri, and D. Iskandar Maulana, “Optimation Image Classification Pada Ikan Hiu Dengan Metode Convolutional Neural Network Dan Data Augmentasi,” J. Tika, vol. 7, no. 1, pp. 1–11, 2022, doi: 10.51179/tika.v7i1.993.

W. Bismi, D. Novianti, and M. Qomaruddin, “Analisis Perbandingan Klasifikasi Citra Genus Panthera dengan Pendekatan Deep learning Model MobileNet,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 1–9, 2024. [Online]. Available: https://publikasiilmiah.unwahas.ac.id/JINRPL/article/view/9037

C. Nisa and F. Candra, “Klasifikasi Jenis Rempah-Rempah Menggunakan Algoritma Convolutional Neural Network,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 78–84, 2023, doi: 10.57152/malcom.v4i1.1018.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Ras Kelinci Menggunakan Convolutional Neural Network (CNN) untuk Optimasi Sistem Identifikasi Visual

Dimensions Badge
Article History
Submitted: 2025-01-06
Published: 2025-01-18
Abstract View: 36 times
PDF Download: 38 times
How to Cite
Huda, M., & Witanti, A. (2025). Klasifikasi Ras Kelinci Menggunakan Convolutional Neural Network (CNN) untuk Optimasi Sistem Identifikasi Visual. Journal of Information System Research (JOSH), 6(2), 1186-1195. https://doi.org/10.47065/josh.v6i2.6627
Issue
Section
Articles