Klasifikasi Ras Kelinci Menggunakan Convolutional Neural Network (CNN) untuk Optimasi Sistem Identifikasi Visual
Abstract
Rabbits are mammals that come in many varieties with unique and diverse physical characteristics. Differentiating various types of rabbits, especially those with physical similarities and color patterns, is a challenge for some people because of their similar visual appearance. The purpose of this research is to develop a Convolutional Neural Network (CNN)-based rabbit breed classification system using MobileNetV3 architecture. A dataset of 1,500 images of three rabbit breeds (bligon, hyla, and new zealand white) was processed through resizing, augmentation, and normalization to improve data quality. The model was trained using Adam's optimizer with 97% accuracy on the validation data and 90% on the external dataset, showing good generalization ability. These results confirm the effectiveness of CNNs over manual methods in visual pattern recognition, while overcoming time constraints and human error. However, limitations in dataset variations, such as lighting and image capture angle, affect the generalization of the model. This research not only supports the efficiency of livestock management but also shows the great potential of AI application in Indonesia's livestock sector. Development of more diverse datasets and exploration of other model architectures are recommended for future performance improvements.
Downloads
References
F. Roji, F. R. Hasibuan, A. H. M. Siregar, and I. A. Jupani, “Pengaruh Penggunaan Tepung Daun Belimbing Manis sebagai Substitansi Pakan Kelinci terhadap Berat Badan,” El-Mujtama J. Pengabdi. Masy., vol. 4, no. 1, pp. 25–33, 2023, doi: 10.47467/elmujtama.v4i1.3124.
R. A. Wardani, D. Indrasanti, and S. Sufiriyanto, “Pengaruh Kepadatan Kandang dan Kebersihan terhadap Tingkat Infeksi Koksidiosis Kelinci di Kecamatan Kembaran Kabupaten Banyumas,” J. Ilm. Ilmu-Ilmu Peternak., vol. 24, no. 2, pp. 109–120, 2022, doi: 10.22437/jiiip.v24i2.12751.
E. Wulandari, W. S. Putranto, A. Pratama, H. Yurmiati, and B. K. Mutaqin, “Pelatihan Penanganan dan Pengolahan Daging Kelinci Sebagai Upaya sebagai Alternatif Sumber Protein Hewani di Masa Pandemi COVID-19,” Media Kontak Tani Ternak, vol. 3, no. 4, p. 115, 2022, doi: 10.24198/mktt.v3i4.36747.
N. Nurhidayati and A. Basit, “Pemanfaatan Limbah Ternak Kelinci untuk Pembuatan Pupuk Organik Padat dan Cair,” J. Pengabdi. Kpd. Masy. (Indonesian J. Community Engag., vol. 6, no. 4, pp. 260–266, 2020, doi: 10.22146/jpkm.53322.
K. Berbagai Umur di Kecamatan Kalibagor Kabupaten Banyumas, R. Arif Pramudya, and D. Indrasanti, “Prevalensi Koksidiosis dan Identifikasi Eimeria sp. Pada Prevalence of Coccidiosis and Identification of Eimeria sp. in Rabbits of Various Ages in Kalibagor Subdistrict Banyumas Regency,” 2020.
A. B. Prakosa, Hendry, and R. Tanone, “Implementasi Model Deep Learning Convolutional Neural Network (CNN) Pada Citra Penyakit Daun Jagung Untuk Klasifikasi Penyakit Tanaman,” J. Pendidik. Teknol. Inf., vol. 6, no. 1, pp. 107–116, 2023. [Online]. Available:https://doi.org/10.37792/jukanti.v6i1.919
U. S. Rahmadhani and N. L. Marpaung, “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 169–173, 2023, doi: 10.30591/jpit.v8i2.5229.
N. C. N. N. Algorithm, S. Zamroni, G. W. Wiriasto, and B. Kanata, “Identifikasi Moncong Sapi menggunakan Metode Jaringan Saraf Tiruan Konvolusional ( CNN ) Recognizing Cow Muzzle Patterns using the Convolution Neural,” vol. 13, pp. 2479–2493, 2024. [Online]. Available: https://doi.org/10.32520/stmsi.v13i6.4598
A. S. Riyadi, I. P. Wardhani, and S. Widayati, “Klasifikasi Citra Anjing Dan Kucing Menggunakan Metode Convolutional Neural Network (Cnn),” Semin. Nas. Teknol. Inf. dan Komun. STI&K, vol. 5, no. 1, pp. 307–311, 2021, [Online]. Available: https://ejournal.jak-stik.ac.id. Accesed: Jan. 13, 2025
R. Gunawan, D. M. I. Hanafie, and A. Elanda, “Klasifikasi Jenis Ras Kucing Dengan Gambar Menggunakan Convolutional Neural Network (CNN),” J. Interkom J. Publ. Ilm. Bid. Teknol. Inf. dan Komun., vol. 18, no. 4, pp. 1–8, 2024, doi: 10.35969/interkom.v18i4.318.
D. Tsalsabila Rhamadiyanti and Kusrini, “Analisa Performa Convolutional Neural Network dalam Klasifikasi Citra Apel dengan Data Augmentasi,” J. Kaji. Ilm. Inform. dan Komput., vol. 5, no. 1, pp. 154–162, 2024, doi: 10.30865/klik.v5i1.2023.
M. Malika and E. Widodo, “Implementasi Deep Learning Untuk Klasifikasi Gambar Menggunakan Convolutional Neural Network (Cnn) Pada Batik Sasambo,” Pattimura Proceeding Conf. Sci. Technol., pp. 335–340, 2022, doi: 10.30598/pattimurasci.2021.knmxx.335-340.
B. Yanto, L. Fimawahib, A. Supriyanto, B. H. Hayadi, and R. R. Pratama, “Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network,” INOVTEK Polbeng - Seri Inform., vol. 6, no. 2, p. 259, 2021, doi: 10.35314/isi.v6i2.2104.
R. Firdaus, Joni Satria, and B. Baidarus, “Klasifikasi Jenis Kelamin Berdasarkan Gambar Mata Menggunakan Algoritma Convolutional Neural Network (CNN),” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 267–273, 2022, doi: 10.37859/coscitech.v3i3.4360.
A. Rizky Fadilla and P. Ayu Wulandari, “Literature Review Analisis Data Kualitatif: Tahap PengumpulanData,” Mitita J. Penelit., vol. 1, no. No 3, pp. 34–46, 2023. [Online]. Available: https://jurnalmitita.univpasifik.ac.id/index.php/mjp/article/view/47
R. Prabowo, Y. Heningtyas, machudor Yusman, M. Iqbal, and O. D. E. Wulansari, “Klasifikasi Image Tumbuhan Obat (Keji Beling) Menggunakan Artificial Neural Network,” J. Komputasi, vol. 9, no. 2541–0350, pp. 88–92, 2021, doi: 10.23960/komputasi.v9i2.2868.
A. R. Hidayat and V. Lusiana, “Deteksi Jenis Sayuran dengan Tensorflow Dengan Metode Convolutional Neural Network,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 2, pp. 1032–1040, 2022. http://dx.doi.org/10.30645/j-sakti.v6i2.512
E. Satria Maheswara, A. B. Zuhri, and D. Iskandar Maulana, “Optimation Image Classification Pada Ikan Hiu Dengan Metode Convolutional Neural Network Dan Data Augmentasi,” J. Tika, vol. 7, no. 1, pp. 1–11, 2022, doi: 10.51179/tika.v7i1.993.
W. Bismi, D. Novianti, and M. Qomaruddin, “Analisis Perbandingan Klasifikasi Citra Genus Panthera dengan Pendekatan Deep learning Model MobileNet,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 1–9, 2024. [Online]. Available: https://publikasiilmiah.unwahas.ac.id/JINRPL/article/view/9037
C. Nisa and F. Candra, “Klasifikasi Jenis Rempah-Rempah Menggunakan Algoritma Convolutional Neural Network,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 78–84, 2023, doi: 10.57152/malcom.v4i1.1018.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Ras Kelinci Menggunakan Convolutional Neural Network (CNN) untuk Optimasi Sistem Identifikasi Visual
Pages: 1186-1195
Copyright (c) 2025 Maasyaril Kirom Mi’Rojul Huda, Arita Witanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).