Klasifikasi Irama Murottal Al-Quran Menggunakan Metode CNN dengan Perbandingan Arsitektur ResNet50 dan VGG16


  • Ilham Rizky Agustin * Mail UIN Sunan Gunung Djati, Bandung, Indonesia
  • Agung Wahana UIN Sunan Gunung Djati, Bandung, Indonesia
  • Aldy Rialdy Atmadja UIN Sunan Gunung Djati, Bandung, Indonesia
  • (*) Corresponding Author
Keywords: CNN; Audio Classification; ResNet50; VGG16; Quran

Abstract

The understanding of murottal Al-Quran among the Indonesian population remains relatively limited. One contributing factor is the difficulty in distinguishing between different murottal rhythms, which requires specialized expertise. Additionally, traditional murottal learning methods necessitate direct interaction with expert teachers, which is not always accessible to everyone. These challenges highlight the importance of developing technology to assist in identifying murottal rhythms. This study developed a murottal rhythm classification model using Convolutional Neural Networks (CNN) with transfer learning, employing two popular architectures: VGG16 and ResNet50. Audio data were processed using Short-Time Fourier Transform (STFT) and Mel-Frequency Cepstral Coefficients (MFCC) feature extraction for analysis.The results showed that the ResNet50 architecture with MFCC-extracted data achieved the best performance, with a training accuracy of 92%, validation accuracy of 85%, and testing accuracy of 86%. Additionally, the model achieved precision, recall, and F1-score values of 0.87 and 0.86, indicating strong generalization capabilities. Conversely, the VGG16 architecture with STFT and MFCC-extracted data demonstrated lower accuracy compared to ResNet50. The findings are expected to provide an innovative solution for developing a self-learning system based on technology to facilitate understanding of murottal rhythms in the Al-Quran.

Downloads

Download data is not yet available.

References

C. Supriadi, “Mengenal Ilmu Tadabur Al-Qur’an:(Teori dan Praktek),” ZAD Al-Mufassirin, vol. 4, no. 1, pp. 20–38, 2022, doi: https://doi.org/10.55759/zam.v4i1.34.

W. H. W. Abdullah, W. F. R. W. Mohamad, A. S. M. Razali, and F. I. Zakaria, “Component of Sawt in Hadeeth Texts: Musiqi al-Quran in the Art of Tarannum,” AL-TURATH JOURNAL OF AL-QURAN AND AL-SUNNAH, vol. 7, no. 2, pp. 68–77, 2022.

J. Lukita, “Pelestarian dan Pengembangan Nagham Al-Quran: Kajian Resepsi Estetis Al-Quran Di Pondok Pesantren Baitul Qurra Tangerang Selatan,” JALSAH: The Journal of Al-Quran and as-Sunnah Studies, vol. 3, no. 2, pp. 1–20, 2023, doi: 10.37252/jqs.v3i2.562.

I. Ilham and K. Kaharuddin, “Pendampingan Program Pondok Pesantren Dalam Penguatan Seni Membaca Al-Qur’an,” Jurnal Pema Tarbiyah, vol. 2, no. 1, pp. 10–19, 2023, doi: 10.30829/pema.v2i1.2416.

S. S. Daulay, A. Suciyandhani, S. Sofian, J. Julaiha, and A. Ardiansyah, “Pengenalan Al-Quran,” Jurnal Ilmiah Wahana Pendidikan, vol. 9, no. 5, pp. 472–480, 2023, doi: https://doi.org/10.5281/zenodo.7754505.

S. Shahriar and U. Tariq, “Classifying maqams of Qur’anic recitations using deep learning,” Ieee Access, vol. 9, pp. 117271–117281, 2021, doi: 10.1109/ACCESS.2021.3098415.

F. Faiza, “Kompetensi Seni Baca Al-Qur’an dalam Meningkatkan Kemampuan Tilawah Santri di Pondok Pesantren an-Najah,” Journal of Educational Research, vol. 2, pp. 171–188, Nov. 2023, doi: 10.56436/jer.v2i1.213.

V. Y. Mafula, A. C. Fauzan, and T. R. Fernando, “Identifikasi Irama Tilawah al-Quran dengan Gaya Mujawwad Menggunakan Naive Bayes Classifier,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 4, no. 2, pp. 242–251, 2022, doi: 10.28926/ilkomnika.v4i2.464.

F. Omari, M. Ghantous, and N. Peleg, “Maqam Classification of Quranic Recitations using Deep Learning,” figshare, vol. 1, Sep. 2023, doi: https://doi.org/10.6084/m9.figshare.24131781.v1.

A. R. Rababaah, “Intelligent classification model for holy Quran recitation Maqams,” Int J Comput Vis Robot, vol. 14, no. 2, pp. 170–190, 2024, doi: 10.1504/IJCVR.2024.136995.

M. A. A. Alaydrus and A. Zahra, “Analysis Of Variation Of Feature Extraction Methods In The Classification Of Al-Qur’an Maqam Using Machine Learning,” J Theor Appl Inf Technol, vol. 101, no. 21, 2023.

M. Lataifeh, A. Elnagar, I. Shahin, and A. B. Nassif, “Arabic audio clips: Identification and discrimination of authentic cantillations from imitations,” Neurocomputing, vol. 418, pp. 162–177, 2020, doi: 10.1016/j.neucom.2020.07.099.

A. Al Harere and K. Al Jallad, “Quran recitation recognition using end-to-end deep learning,” arXiv preprint, vol. 1, 2023, doi: /10.48550/arXiv.2305.07034.

D. M. Omran, A. H. Kandil, A. ElBialy, S. Samy, and S. Fawzy, “CNN for speech recognition case study: Recitation Rules of the holy Quran,” MSA Engineering Journal, vol. 2, no. 4, pp. 1–12, 2023, doi: 10.21608/msaeng.2023.225120.1335.

A. M. H. Azis et al., “Automatic Detection of Hijaiyah Letters Pronunciation using Convolutional Neural Network Algorithm,” Jurnal Online Informatika, vol. 7, no. 1, pp. 123–131, 2022, doi: doi.org/10.15575/join.v7i1.882.

T. Hidayat, “Klasifikasi jenis irama qiro’ah menggunakan metode Mel frequency cepstral coefficients dan algoritma Support vector machine,” Skripsi, Teknik Informatika, UIN Sunan Gunung Djati, Bandung, Indonesia, 2023.

E. Tsalera, A. Papadakis, and M. Samarakou, “Comparison of Pre-Trained CNNs for Audio Classification Using Transfer Learning,” Journal of Sensor and Actuator Networks, vol. 10, no. 4, 2021, doi: 10.3390/jsan10040072.

M. Jakubec, E. Lieskovska, and R. Jarina, “Speaker recognition with resnet and vgg networks,” in 2021 31st International Conference Radioelektronika (RADIOELEKTRONIKA), IEEE, 2021, pp. 1–5. doi: 10.1109/RADIOELEKTRONIKA52220.2021.9420202.

A. A. Alnuaim et al., “Speaker gender recognition based on deep neural networks and ResNet50,” Wirel Commun Mob Comput, vol. 2022, no. 1, p. 4444388, 2022, doi: 10.1155/2022/4444388.

S. Hamsa, I. Shahin, Y. Iraqi, E. Damiani, A. B. Nassif, and N. Werghi, “Speaker identification from emotional and noisy speech using learned voice segregation and speech VGG,” Expert Syst Appl, vol. 224, p. 119871, 2023, doi: 10.1016/j.eswa.2023.119871.

T. Toshniwal, P. Tandon, and P. Nithyakani, “Music Genre Recognition Using Short Time Fourier Tranform And CNN,” in 2022 International Conference on Computer Communication and Informatics (ICCCI), IEEE, 2022, pp. 1–4. doi: 10.1109/ICCCI54379.2022.9740939.

D. Kusumawati, A. A. Ilham, A. Achmad, and I. Nurtanio, “Performance Analysis of Feature Mel Frequency Cepstral Coefficient and Short Time Fourier Transform Input for Lie Detection using Convolutional Neural Network,” JOIV: International Journal on Informatics Visualization, vol. 8, no. 1, pp. 279–288, 2024.

S. Saleem, A. Dilawari, and U. G. Khan, “Spoofed voice detection using dense features of stft and mdct spectrograms,” in 2021 International Conference on Artificial Intelligence (ICAI), IEEE, 2021, pp. 56–61. doi: 10.1109/ICAI52203.2021.9445259.

M. Aatila, M. Lachgar, H. Hrimech, and A. Kartit, “Diabetic retinopathy classification using ResNet50 and VGG-16 pretrained networks,” International Journal of Computer Engineering and Data Science (IJCEDS), vol. 1, no. 1, pp. 1–7, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Irama Murottal Al-Quran Menggunakan Metode CNN dengan Perbandingan Arsitektur ResNet50 dan VGG16

Dimensions Badge
Article History
Submitted: 2024-12-12
Published: 2024-12-31
Abstract View: 128 times
PDF Download: 62 times
How to Cite
Agustin, I., Wahana, A., & Atmadja, A. (2024). Klasifikasi Irama Murottal Al-Quran Menggunakan Metode CNN dengan Perbandingan Arsitektur ResNet50 dan VGG16. Journal of Information System Research (JOSH), 6(2), 912-920. https://doi.org/10.47065/josh.v6i2.6440
Section
Articles