Prediksi Penyakit Getah Bening dengan Algoritma Linear Regresi Berganda
Abstract
This study aims to evaluate the performance of the multiple linear regression algorithm in predicting lymph node diseases by utilizing a multivariate dataset. This algorithm was chosen for its ability to analyze complex relationships between independent and dependent variables, which is expected to provide accurate prediction results. The model evaluation was conducted using three key metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Square Error (RMSE), to measure prediction error levels and model reliability. The study results indicate that the multiple linear regression algorithm achieved MAE of 0.3, MSE of 0.3, and RMSE of 0.5. These values demonstrate low prediction error and acceptable accuracy, suggesting the algorithm's potential for application in assisting the diagnosis of lymph node diseases.
Downloads
References
S. L. Fajri and G. W. Nurcahyo, “Sistem Pakar dalam Menganalisis Penyakit Kelenjar Getah Bening Menggunakan Metode Certainty Factor,” J. Sistim Inf. dan Teknol., vol. 3, pp. 269–274, 2021, doi: 10.37034/jsisfotek.v3i4.77.
J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf. Sci. (Ny)., vol. 507, pp. 772–794, 2020, doi: 10.1016/j.ins.2019.06.064.
A. Ahmad, A. Ullah, K. N. Khan, and M. S. Khan, “Automated Assessment of Lymphocytes Using Machine Learning Techniques,” 2021 Int. Conf. Artif. Intell. ICAI 2021, pp. 108–112, 2021, doi: 10.1109/ICAI52203.2021.9445242.
U. F. S. S. P. Cindy Saputri, Milfa Yetri, “Sistem Pakar Mendiagnosis Penyakit Kelenjar Getah Bening Dengan Menggunakan Metode Teorema Bayes,” J. Kesehat., vol. 1(2), no. 2, pp. 1–12, 2019.
A. Sari and D. U. Putri, “Penerapan Regresi Linear Berganda Untuk Memprediksi Diabetes Secara Dini,” J. Tek., vol. 3, no. 1, p. 32, 2023, doi: 10.54314/teknisi.v3i1.1255.
F. O. Lusiana, I. Fatma, and A. P. Windarto, “Estimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Simalungun,” J. Informatics Manag. Inf. Technol., vol. 1, no. 2, pp. 79–84, 2021, doi: 10.47065/jimat.v1i2.104.
M. D. Irrawati and M. Mukaramah, “Implementasi Metode Regresi Linear Berganda untuk Mengatasi Pelanggaran Asumsi Klasik,” Stud. Akuntansi, Keuangan, dan Manaj., vol. 3, no. 2, pp. 83–94, 2024, doi: 10.35912/sakman.v3i2.2743.
Normah, B. Rifai, S. Vambudi, and R. Maulana, “Implementasi Data Mining Dengan Algoritma Multiple Linear Regression Untuk Memprediksi Penyakit Diabetes,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.
M. A. Rahman Wahid, A. Nugroho, and A. Halim Anshor, “Prediksi Penyakit Kanker Paru-Paru Dengan Algoritma Regresi Linier,” Bull. Inf. Technol., vol. 4, no. 1, pp. 63–74, 2023, doi: 10.47065/bit.v4i1.501.
A. Wijayadhi, M. Makmun Effendi, and S. Budi Rahardjo, “Prediksi Penyakit Jantung Dengan Algoritma Regresi Linier,” Bull. Inf. Technol., vol. 4, no. 1, pp. 15–28, 2023, doi: 10.47065/bit.v4i1.463.
R. G. Wardhana, G. Wang, and F. Sibuea, “Penerapan Machine Learning Dalam Prediksi Tingkat Kasus Penyakit Di Indonesia,” J. Inf. Syst. Manag., vol. 5, no. 1, pp. 40–45, 2023, doi: 10.24076/joism.2023v5i1.1136.
A. M. Majid and I. Nawangsih, “Perbandingan Metode Ensemble Untuk Meningkatkan Akurasi Algoritm Machine Learning Dalam Memprediksi Penyakit Breast Cancer (Kanker Payudara),” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 23, no. 1, p. 97, 2024, doi: 10.53513/jis.v23i1.9563.
F. Akbar and Rahmaddeni, “Jurnal Politeknik Caltex Riau Komparasi Algoritma Machine Learning untuk Memprediksi Penyakit Alzheimer,” J. Komput. Terap., vol. 8, no. 2, pp. 236–245, 2022, [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/
F. H. Hamdanah and D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 1, p. 23, 2021, doi: 10.23887/janapati.v10i1.31035.
A. Eka, A. Juarna, T. Informatika, F. T. Industri, and U. Gunadarma, “Prediksi Pro duksi Daging Sapi Nasional dengan Meto de Regresi Linier dan Regresi Polinomial,” J. Ilm. Komputasi, vol. 20, no. 2, pp. 209–215, 2021, doi: 10.32409/jikstik.20.2.2722.
S. Rahmatullah, E. H. Juningsih, and S. Rachmawati, “Prediksi nilai akademik peserta didik di masa pandemi covid-19 dengan regresi linier berganda,” JISAMAR (Journal Inf. Syst. Applied, Manag. Account. Res., vol. 7, no. 1, pp. 112–123, 2023, doi: 10.52362/jisamar.v7i1.1012.
N. R. Muntiari and K. H. Hanif, “Klasifikasi Penyakit Kanker Payudara Menggunakan Perbandingan Algoritma Machine Learning,” J. Ilmu Komput. dan Teknol., vol. 3, no. 1, pp. 1–6, 2022, doi: 10.35960/ikomti.v3i1.766.
M. Aditya Pratama, M. Munawaroh, W. Joko Pranoto, P. Studi Teknik Informatika, F. Sains dan Teknologi, and U. Muhammadiyah Kalimantan Timur, “Perbandingan Performa Algoritma Linear Regresi dan Random Forest untuk Prediksi Harga Bawang Merah di Kota Samarinda,” J. Ilmu Tek., vol. 1, no. 2, pp. 172–182, 2024, [Online]. Available: https://doi.org/10.62017/tektonik
Y. Syakir et al., “Analisis Marketplace Shopee Untuk Memprediksi Penjualan dengan Algoritma Regresi Linier,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 2, pp. 904–915, 2022.
S. Zahara and Sugianto, “Peramalan Data Indeks Harga Konsumen Berbasis Time Series Multivariate Menggunakan Deep Learning,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 24–30, 2021, doi: 10.29207/resti.v5i1.2562.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Penyakit Getah Bening dengan Algoritma Linear Regresi Berganda
Pages: 831-838
Copyright (c) 2024 Christofael Natalio Dondan, Evangs Mailoa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).