Prediksi Capaian Bulanan Pajak Daerah Kabupaten Bandung Barat Menggunakan Metode Logistic Regression


  • Muhammad Ramdhani * Mail Universitas Jenderal Achmad Yani, Cimahi, Indonesia
  • Fajri Rakhmat Umbara Universitas Jenderal Achmad Yani, Cimahi, Indonesia
  • Ridwan Ilyas Universitas Jenderal Achmad Yani, Cimahi, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Taxes; Classification; Logistic Regression; Economy

Abstract

Tax is the main source of income for the state, so that tax revenue is the biggest contributor to government agencies. However, the Regional Revenue Agency (BAPENDA) sometimes has difficulties in predicting regional monthly income. The data owned by BAPENDA is very important for estimating tax increases every month, but often these estimates are wrong. Therefore, research on predicting monthly tax ACHIEVEMENT is very helpful. Researchers consider the data mining method approach is a technique that can help BAPENDA find predictive patterns that are important for making tax increase decisions. sebumnya has predicted the results of the Ann method where for neurons 20 it produces an rmse prediction of 0.12. In this study, the logistic regression algorithm approach was used to predict regional tax achievements in West Bandung Regency. In addition, experiments were carried out to evaluate which variables affect the probability value.

Downloads

Download data is not yet available.

References

O. Arabella dan M. Yenni, “Pengaruh kualitas pelayanan petugas pajak, sanksi perpajakan dan biaya kepatuhan pajak terhadap kepatuhan wajib pajak UMKM,” 2013.

B. E. Widari, “ANALISIS PENERIMAAN PAJAK BUMI DAN BANGUNAN TERHADAP PENDAPATAN DAERAH PEMERINTAH KOTA SURABAYA Sutjipto Ngumar Sekolah Tinggi Ilmu Ekonomi Indonesia (STIESIA) Surabaya,” 2016.

F. Ayu, “Analisis Penetapan Target Penerimaan Pajak Daerah (Studi Pada Dispenda Kota Malang),” 2016.

C. Ivo, “Model Artificial Neural Network Berbasis Particle Swarm Optimization Untuk Prediksi Pendapatan Asli Daerah (PAD),” 2019.

E. Shaputra dan B. Serasi Ginting, “PREDIKSI PENDAPATAN ASLI DAERAH (PAD) KABUPATEN LANGKAT MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 5, no. 1, 2021.

A. A. T. Fernandes, D. B. F. Filho, E. C. da Rocha, dan W. da Silva Nascimento, “Read this paper if you want to learn logistic regression,” Revista de Sociologia e Politica, vol. 28, no. 74, hlm. 1/1-19/19, 2020, doi: 10.1590/1678-987320287406EN.

H. Rianto, S. Tinggi, M. Informatika, D. Komputer, dan N. Mandiri, “Resampling Logistic Regression untuk Penanganan Ketidakseimbangan Class pada Prediksi Cacat Software,” Journal of Software Engineering, vol. 1, no. 1, 2015, [Daring]. Tersedia pada: http://journal.ilmukomputer.org

J. Paul Mueller dan L. Massaron, “Data Science Programming All-in-One For Dummies ® WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE,” 2020. [Daring]. Tersedia pada: http://www.wiley.com/go/permissions.

paul,mueller johon dan massaron luca, “Python ® for Data Science For Dummies ® , 2nd Edition,” 2019. [Daring]. Tersedia pada: http://www.wiley.com/go/permissions.

S. Hasuna dkk., “IMPLEMENTASI ASSOCIATION RULE & FREQUENT PATTERN GROWTH UNTUK PENENTUAN SISTEM REKOMENDASI KEPUTUSAN PEMBELIAN,” Seminar Nasional Teknologi Informasi dan Komunikasi STI&K (SeNTIK), vol. 4, no. 1, 2020.

C. D. Larose dan D. T. Larose, Data science using Python and R. 2019.

F. Cady, Data science : the executive summary : a technical book for non-technical professionals. 2021.

Rohan. Chopra, Aaron. England, dan M. Noordeen. Alaudeen, Data Science with Python : Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data. Packt Publishing, Limited, 2019.

M. Bilal, G. Ali, M. W. Iqbal, M. Anwar, M. S. A. Malik, dan R. A. Kadir, “Auto-Prep: Efficient and Automated Data Preprocessing Pipeline,” IEEE Access, vol. 10, hlm. 107764–107784, 2022, doi: 10.1109/ACCESS.2022.3198662.

A. M. Bianco, G. Boente, dan G. Chebi, “Penalized robust estimators in logistic regression with applications to sparse models,” Nov 2019, [Daring]. Tersedia pada: http://arxiv.org/abs/1911.00554

R. Siringoringo, R. Perangin Angin, dan B. Rumahorbo, “MODEL KLASIFIKASI GENETIC-XGBOOST DENGAN T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING PADA PERAMALAN PASAR,” 2022. [Daring]. Tersedia pada: https://archive.ics.uci.edu/ml/datasets/online+retail

S. Erpolat Tasabat dan O. Aydin, “Outlier detection method by using deep neural networks,” Pressacademia, vol. 5, no. 1, hlm. 96–101, Jun 2017, doi: 10.17261/pressacademia.2017.577.

H. Benallal dkk., “A new approach for removing point cloud outliers using box plot A new approach for removing point cloud outliers using box plot 3-D watermarking View project Deceptive opinion spam detection View project A New Approach for Removing Point Cloud Outliers using Box plot,” 2023, doi: 10.1117/12.2618842ï.

H. Liu dan M. Cocea, “Semi-random partitioning of data into training and test sets in granular computing context,” Granular Computing, vol. 2, no. 4, hlm. 357–386, Des 2017, doi: 10.1007/s41066-017-0049-2.

A. Gholamy, V. Kreinovich, dan O. Kosheleva, “A Pedagogical Explanation A Pedagogical Explanation Part of the Computer Sciences Commons,” 2018. [Daring]. Tersedia pada: https://scholarworks.utep.edu/cs_techrephttps://scholarworks.utep.edu/cs_techrep/1209

G. S. Luis, Grokking Machine Learning. 2021.

A. Alan dan finlay Barbara, “AGRSTI_Statistical methods for the social sciences,” 2008.

J. M. Hilbe, “Practical Guide to Logistic Regression,” 2015.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Prediksi Capaian Bulanan Pajak Daerah Kabupaten Bandung Barat Menggunakan Metode Logistic Regression

Dimensions Badge
Article History
Submitted: 2024-06-12
Published: 2024-07-19
Abstract View: 608 times
PDF Download: 433 times
How to Cite
Ramdhani, M., Umbara, F. R., & Ilyas, R. (2024). Prediksi Capaian Bulanan Pajak Daerah Kabupaten Bandung Barat Menggunakan Metode Logistic Regression. Journal of Information System Research (JOSH), 5(4), 881-890. https://doi.org/10.47065/josh.v5i4.5330
Issue
Section
Articles