Prediksi Capaian Bulanan Pajak Daerah Kabupaten Bandung Barat Menggunakan Metode Logistic Regression
Abstract
Tax is the main source of income for the state, so that tax revenue is the biggest contributor to government agencies. However, the Regional Revenue Agency (BAPENDA) sometimes has difficulties in predicting regional monthly income. The data owned by BAPENDA is very important for estimating tax increases every month, but often these estimates are wrong. Therefore, research on predicting monthly tax ACHIEVEMENT is very helpful. Researchers consider the data mining method approach is a technique that can help BAPENDA find predictive patterns that are important for making tax increase decisions. sebumnya has predicted the results of the Ann method where for neurons 20 it produces an rmse prediction of 0.12. In this study, the logistic regression algorithm approach was used to predict regional tax achievements in West Bandung Regency. In addition, experiments were carried out to evaluate which variables affect the probability value.
Downloads
References
O. Arabella dan M. Yenni, “Pengaruh kualitas pelayanan petugas pajak, sanksi perpajakan dan biaya kepatuhan pajak terhadap kepatuhan wajib pajak UMKM,” 2013.
B. E. Widari, “ANALISIS PENERIMAAN PAJAK BUMI DAN BANGUNAN TERHADAP PENDAPATAN DAERAH PEMERINTAH KOTA SURABAYA Sutjipto Ngumar Sekolah Tinggi Ilmu Ekonomi Indonesia (STIESIA) Surabaya,” 2016.
F. Ayu, “Analisis Penetapan Target Penerimaan Pajak Daerah (Studi Pada Dispenda Kota Malang),” 2016.
C. Ivo, “Model Artificial Neural Network Berbasis Particle Swarm Optimization Untuk Prediksi Pendapatan Asli Daerah (PAD),” 2019.
E. Shaputra dan B. Serasi Ginting, “PREDIKSI PENDAPATAN ASLI DAERAH (PAD) KABUPATEN LANGKAT MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 5, no. 1, 2021.
A. A. T. Fernandes, D. B. F. Filho, E. C. da Rocha, dan W. da Silva Nascimento, “Read this paper if you want to learn logistic regression,” Revista de Sociologia e Politica, vol. 28, no. 74, hlm. 1/1-19/19, 2020, doi: 10.1590/1678-987320287406EN.
H. Rianto, S. Tinggi, M. Informatika, D. Komputer, dan N. Mandiri, “Resampling Logistic Regression untuk Penanganan Ketidakseimbangan Class pada Prediksi Cacat Software,” Journal of Software Engineering, vol. 1, no. 1, 2015, [Daring]. Tersedia pada: http://journal.ilmukomputer.org
J. Paul Mueller dan L. Massaron, “Data Science Programming All-in-One For Dummies ® WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE,” 2020. [Daring]. Tersedia pada: http://www.wiley.com/go/permissions.
paul,mueller johon dan massaron luca, “Python ® for Data Science For Dummies ® , 2nd Edition,” 2019. [Daring]. Tersedia pada: http://www.wiley.com/go/permissions.
S. Hasuna dkk., “IMPLEMENTASI ASSOCIATION RULE & FREQUENT PATTERN GROWTH UNTUK PENENTUAN SISTEM REKOMENDASI KEPUTUSAN PEMBELIAN,” Seminar Nasional Teknologi Informasi dan Komunikasi STI&K (SeNTIK), vol. 4, no. 1, 2020.
C. D. Larose dan D. T. Larose, Data science using Python and R. 2019.
F. Cady, Data science : the executive summary : a technical book for non-technical professionals. 2021.
Rohan. Chopra, Aaron. England, dan M. Noordeen. Alaudeen, Data Science with Python : Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data. Packt Publishing, Limited, 2019.
M. Bilal, G. Ali, M. W. Iqbal, M. Anwar, M. S. A. Malik, dan R. A. Kadir, “Auto-Prep: Efficient and Automated Data Preprocessing Pipeline,” IEEE Access, vol. 10, hlm. 107764–107784, 2022, doi: 10.1109/ACCESS.2022.3198662.
A. M. Bianco, G. Boente, dan G. Chebi, “Penalized robust estimators in logistic regression with applications to sparse models,” Nov 2019, [Daring]. Tersedia pada: http://arxiv.org/abs/1911.00554
R. Siringoringo, R. Perangin Angin, dan B. Rumahorbo, “MODEL KLASIFIKASI GENETIC-XGBOOST DENGAN T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING PADA PERAMALAN PASAR,” 2022. [Daring]. Tersedia pada: https://archive.ics.uci.edu/ml/datasets/online+retail
S. Erpolat Tasabat dan O. Aydin, “Outlier detection method by using deep neural networks,” Pressacademia, vol. 5, no. 1, hlm. 96–101, Jun 2017, doi: 10.17261/pressacademia.2017.577.
H. Benallal dkk., “A new approach for removing point cloud outliers using box plot A new approach for removing point cloud outliers using box plot 3-D watermarking View project Deceptive opinion spam detection View project A New Approach for Removing Point Cloud Outliers using Box plot,” 2023, doi: 10.1117/12.2618842ï.
H. Liu dan M. Cocea, “Semi-random partitioning of data into training and test sets in granular computing context,” Granular Computing, vol. 2, no. 4, hlm. 357–386, Des 2017, doi: 10.1007/s41066-017-0049-2.
A. Gholamy, V. Kreinovich, dan O. Kosheleva, “A Pedagogical Explanation A Pedagogical Explanation Part of the Computer Sciences Commons,” 2018. [Daring]. Tersedia pada: https://scholarworks.utep.edu/cs_techrephttps://scholarworks.utep.edu/cs_techrep/1209
G. S. Luis, Grokking Machine Learning. 2021.
A. Alan dan finlay Barbara, “AGRSTI_Statistical methods for the social sciences,” 2008.
J. M. Hilbe, “Practical Guide to Logistic Regression,” 2015.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Capaian Bulanan Pajak Daerah Kabupaten Bandung Barat Menggunakan Metode Logistic Regression
Pages: 881-890
Copyright (c) 2024 Muhammad Ramdhani, Fajri Rakhmat Umbara, Ridwan Ilyas

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















