Implementasi Triple Exponential Smoothing dan Double Moving Average Untuk Peramalan Produksi Kernel Kelapa Sawit


  • Risfi Ayu Sandika * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Siska Kurnia Gusti Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Lestari Handayani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Siti Ramadhani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Double Moving Average; Palm Kernel; Forecasting; Triple Exponential Smoothing

Abstract

The production of palm kernel is a significant product for the company and plays a crucial role. Nevertheless, the stability of kernel production is not always consistent, and the quality of the kernel can be detrimental to the company. As consumer demands change over time, companies must anticipate every fluctuation in palm kernel production. Hence it is vital to figure the long run with a settlement prepare utilizing information mining utilizing information within the past. The Triple Exponential Smoothing and Double Moving Average methods, which are data mining methods for future forecasting, were used in this study. The aim of this research is to predict the yield of future oil palm kernel production using the Triple Exponential Smoothing and Double Moving Average methods and to determine the level of forecasting errors using the Mean Absolute Percentage Error (MAPE) method. The data for the last ten years, from January 2013 to December 2022, were used in this study. After testing the Triple Exponential Smoothing method with parameters α=0.2,β=0.γ=0.2, the error rate using MAPE was 9.48%, and the Double Moving Average method had an error rate of 11.2%. The MAPE results of the Triple Exponential Smoothing method are considered very good, while the MAPE results of the Double Moving Average method are categorized as good based on the range of MAPE values. This research is expected to provide information to related companies as a supporting reference in anticipating palm oil kernel production. The conclusion of the research is that the Triple Exponential Smoothing method with the test parameters is the best method for forecasting.

Downloads

Download data is not yet available.

References

H. Dorthy, E. Sinaga, and N. Irawati, “Penerapan Trend Moment Untuk Meramalkan Penjualan Produksi Kelapa Sawit Di Kebun Buntu Pane, Kabupaten Asahan,” 2022.

D. Santika, R. S. Hayati, I. Lazuli, J. Teknik, and I. Potensi Utama, “Penerapan Metode Triple Exponential Smoothing Dalam Prediksi Penanaman Bibit Kelapa Sawit Pada PT. Palmanco Inti Sawit The Application of the Triple Exponential Smoothing Method in the Prediction of Planting Oil Palm Seeds at PT. Palmanco Inti Sawit,” 12. InfoSys Journal, vol. 5, pp. 12–24, 2020.

I. Meiza Maharani and A. Fauzan, “Perbandingan Metode Peramalan Jumlah Produksi Palm Kernel Oil (PKO) Menggunakan Metode Double Moving Average, Double Exponential Smothing dan Box Jenkins,” vol. 16, no. 2, pp. 162–173, 2020, doi: 10.20956/jmsk.v%vi%i.7795.

J. Adhiva, S. Ayunda Putri, and S. Genjang Setyorini, “Prediksi Hasil Produksi Kelapa Sawit Menggunakan Model Regresi Pada PT. Perkebunan Nusantara V,” 2020.

F. Irawan, S. Sumijan, and Y. Yuhandri, “Prediksi Tingkat Produksi Buah Kelapa Sawit dengan Metode Single Moving Average,” Jurnal Informasi dan Teknologi, pp. 251–256, Sep. 2021, doi: 10.37034/jidt.v3i4.162.

E. Lette, M. Zunaidi, and W. Rista Maya, “Prediksi Penjualan Crude Palm Oil (CPO) Menggunakan Metode Regresi Linear Berganda,” JURNAL SISTEM INFORMASI TGD, vol. 1, pp. 128–138, 2022, [Online]. Available:

https://ojs.trigunadharma.ac.id/index.php/jsi

A. Prasetyo and J. Teknologi Informasi dan Komputer Politeknik Negeri Lhokseumawe, “Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda,” Multimedia & Jaringan, vol. 6, no. 2, 2021.

S. Agustian, H. Wibowo, I. Negeri, S. K. Riau, J. H. R. Soeberantas, and S. B. Panam, “Perbandingan Metode Moving

Average untuk Prediksi Hasil Produksi Kelapa Sawit,” 2019. [Online]. Available:

https://www.infosawit.com/news/6026/5-provinsi-produsen-terbesar-sawit-nasional

Guntoro, Lisnawita, Zamzami, and D. Setiawan, “Prediction of palm oil production in Riau Province using the single exponential smoothing method,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2022. doi: 10.1088/1755-1315/1041/1/012055.

I. Meiza Maharani and A. Fauzan, “Perbandingan Metode Peramalan Jumlah Produksi Palm Kernel Oil (PKO) Menggunakan Metode Double Moving Average, Double Exponential Smothing dan Box Jenkins,” vol. 16, no. 2, pp. 162–173, 2020, doi: 10.20956/jmsk.v%vi%i.7795.

S. Madianto, E. Utami, and A. D. Hartanto, “Algoritma Triple Exponential Smoothing Untuk Prediksi Trend Turis

Pariwisata Jatim Park Batu saat Pandemi Covid-19,” 2021. [Online]. Available:

http://jurnal.polibatam.ac.id/index.php/JAIC

Indra and N. Rasjid, “PREDIKSI JUMLAH KASUS PENYAKIT DIARE MENGGUNAKAN METODE TRIPLE EXPONENTIAL SMOOTHING (TES),” 2021.

E. A. N. Putro, E. Rimawati, and R. T. Vulandari, “Prediksi Penjualan Kertas Menggunakan Metode Double Exponential Smoothing,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 9, no. 1, p. 60, Apr. 2021, doi: 10.30646/tikomsin.v9i1.548.

U. PGRI Kediri, A. suara, A. Sanjaya, and D. Putra Pamungkas, “Implementasi Metode Double Moving Average Untuk Prediksi Produksi Sabun,” Seminar Nasional Inovasi Teknologi, 2022.

M. Azman Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ,” JURNAL SISTEM DAN INFORMATIKA, vol. 13, 2019.

D. Yulianti and A. Momon, “Implementasi Metode Double Moving Average dan Regresi Linier untuk Peramalan Asam Sulfat di PT.XYZ,” vol. VIII, no. 1, 2023.

D. Santika, R. S. Hayati, I. Lazuli, J. Teknik, and I. Potensi Utama, “Penerapan Metode Triple Exponential Smoothing Dalam Prediksi Penanaman Bibit Kelapa Sawit Pada PT. Palmanco Inti Sawit The Application of the Triple Exponential Smoothing Method in the Prediction of Planting Oil Palm Seeds at PT. Palmanco Inti Sawit,” 12. InfoSys Journal, vol. 5, pp. 12–24, 2020.

S. Madianto, E. Utami, and A. D. Hartanto, “Algoritma Triple Exponential Smoothing Untuk Prediksi Trend Turis

Pariwisata Jatim Park Batu saat Pandemi Covid-19,” 2021. [Online]. Available:

http://jurnal.polibatam.ac.id/index.php/JAIC

Indra and Rasjid Nurdina, “PREDIKSI JUMLAH KASUS PENYAKIT DIARE MENGGUNAKAN METODE TRIPLE EXPONENTIAL SMOOTHING (TES),” Dec. 2021.

J. Nangi, S. Hartinah Indrianti, and B. Pramono, “PERAMALAN PERSEDIAAN OBAT MENGGUNAKAN METODE TRIPLE EXPONENTIAL SMOOTHING (TES) (STUDI KASUS : INSTALASI FARMASI RSUD KAB. MUNA),” vol. 4, no. 1, pp. 135–142.

A. Prasetyo and J. Teknologi Informasi dan Komputer Politeknik Negeri Lhokseumawe, “Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda,” Multimedia & Jaringan, vol. 6, no. 2, 2021.

H. Dorthy, E. Sinaga, and N. Irawati, “Penerapan Trend Moment Untuk Meramalkan Penjualan Produksi Kelapa Sawit Di Kebun Buntu Pane, Kabupaten Asahan,” 2022.

W. Fuadi, R. Wandi, and M. W. Pohan, “Aplikasi Geografis Prediksi Hasil Padi Menggunakan Metode Double Moving Average di Kabupaten Aceh Utara,” TECHSI - Jurnal Teknik Informatika, vol. 13, no. 1, p. 50, Apr. 2021, doi: 10.29103/techsi.v13i1.2831.

F. Kusuma et al., “Jurnal Informatika dan Rekayasa Perangkat Lunak Prediksi Jumlah Penduduk Miskin Indonesia menggunakan Metode Single Moving Average dan Double Moving Average,” vol. 3, no. 2, pp. 105–109, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Triple Exponential Smoothing dan Double Moving Average Untuk Peramalan Produksi Kernel Kelapa Sawit

Dimensions Badge
Article History
Submitted: 2023-04-10
Published: 2023-04-30
Abstract View: 1080 times
PDF Download: 729 times
How to Cite
Sandika, R., Gusti, S., Handayani, L., & Ramadhani, S. (2023). Implementasi Triple Exponential Smoothing dan Double Moving Average Untuk Peramalan Produksi Kernel Kelapa Sawit. Journal of Information System Research (JOSH), 4(3), 883-893. https://doi.org/10.47065/josh.v4i3.3359
Issue
Section
Articles