Implementasi Triple Exponential Smoothing dan Double Moving Average Untuk Peramalan Produksi Kernel Kelapa Sawit
Abstract
The production of palm kernel is a significant product for the company and plays a crucial role. Nevertheless, the stability of kernel production is not always consistent, and the quality of the kernel can be detrimental to the company. As consumer demands change over time, companies must anticipate every fluctuation in palm kernel production. Hence it is vital to figure the long run with a settlement prepare utilizing information mining utilizing information within the past. The Triple Exponential Smoothing and Double Moving Average methods, which are data mining methods for future forecasting, were used in this study. The aim of this research is to predict the yield of future oil palm kernel production using the Triple Exponential Smoothing and Double Moving Average methods and to determine the level of forecasting errors using the Mean Absolute Percentage Error (MAPE) method. The data for the last ten years, from January 2013 to December 2022, were used in this study. After testing the Triple Exponential Smoothing method with parameters α=0.2,β=0.γ=0.2, the error rate using MAPE was 9.48%, and the Double Moving Average method had an error rate of 11.2%. The MAPE results of the Triple Exponential Smoothing method are considered very good, while the MAPE results of the Double Moving Average method are categorized as good based on the range of MAPE values. This research is expected to provide information to related companies as a supporting reference in anticipating palm oil kernel production. The conclusion of the research is that the Triple Exponential Smoothing method with the test parameters is the best method for forecasting.
Downloads
References
H. Dorthy, E. Sinaga, and N. Irawati, “Penerapan Trend Moment Untuk Meramalkan Penjualan Produksi Kelapa Sawit Di Kebun Buntu Pane, Kabupaten Asahan,” 2022.
D. Santika, R. S. Hayati, I. Lazuli, J. Teknik, and I. Potensi Utama, “Penerapan Metode Triple Exponential Smoothing Dalam Prediksi Penanaman Bibit Kelapa Sawit Pada PT. Palmanco Inti Sawit The Application of the Triple Exponential Smoothing Method in the Prediction of Planting Oil Palm Seeds at PT. Palmanco Inti Sawit,” 12. InfoSys Journal, vol. 5, pp. 12–24, 2020.
I. Meiza Maharani and A. Fauzan, “Perbandingan Metode Peramalan Jumlah Produksi Palm Kernel Oil (PKO) Menggunakan Metode Double Moving Average, Double Exponential Smothing dan Box Jenkins,” vol. 16, no. 2, pp. 162–173, 2020, doi: 10.20956/jmsk.v%vi%i.7795.
J. Adhiva, S. Ayunda Putri, and S. Genjang Setyorini, “Prediksi Hasil Produksi Kelapa Sawit Menggunakan Model Regresi Pada PT. Perkebunan Nusantara V,” 2020.
F. Irawan, S. Sumijan, and Y. Yuhandri, “Prediksi Tingkat Produksi Buah Kelapa Sawit dengan Metode Single Moving Average,” Jurnal Informasi dan Teknologi, pp. 251–256, Sep. 2021, doi: 10.37034/jidt.v3i4.162.
E. Lette, M. Zunaidi, and W. Rista Maya, “Prediksi Penjualan Crude Palm Oil (CPO) Menggunakan Metode Regresi Linear Berganda,” JURNAL SISTEM INFORMASI TGD, vol. 1, pp. 128–138, 2022, [Online]. Available:
https://ojs.trigunadharma.ac.id/index.php/jsi
A. Prasetyo and J. Teknologi Informasi dan Komputer Politeknik Negeri Lhokseumawe, “Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda,” Multimedia & Jaringan, vol. 6, no. 2, 2021.
S. Agustian, H. Wibowo, I. Negeri, S. K. Riau, J. H. R. Soeberantas, and S. B. Panam, “Perbandingan Metode Moving
Average untuk Prediksi Hasil Produksi Kelapa Sawit,” 2019. [Online]. Available:
https://www.infosawit.com/news/6026/5-provinsi-produsen-terbesar-sawit-nasional
Guntoro, Lisnawita, Zamzami, and D. Setiawan, “Prediction of palm oil production in Riau Province using the single exponential smoothing method,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2022. doi: 10.1088/1755-1315/1041/1/012055.
I. Meiza Maharani and A. Fauzan, “Perbandingan Metode Peramalan Jumlah Produksi Palm Kernel Oil (PKO) Menggunakan Metode Double Moving Average, Double Exponential Smothing dan Box Jenkins,” vol. 16, no. 2, pp. 162–173, 2020, doi: 10.20956/jmsk.v%vi%i.7795.
S. Madianto, E. Utami, and A. D. Hartanto, “Algoritma Triple Exponential Smoothing Untuk Prediksi Trend Turis
Pariwisata Jatim Park Batu saat Pandemi Covid-19,” 2021. [Online]. Available:
http://jurnal.polibatam.ac.id/index.php/JAIC
Indra and N. Rasjid, “PREDIKSI JUMLAH KASUS PENYAKIT DIARE MENGGUNAKAN METODE TRIPLE EXPONENTIAL SMOOTHING (TES),” 2021.
E. A. N. Putro, E. Rimawati, and R. T. Vulandari, “Prediksi Penjualan Kertas Menggunakan Metode Double Exponential Smoothing,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 9, no. 1, p. 60, Apr. 2021, doi: 10.30646/tikomsin.v9i1.548.
U. PGRI Kediri, A. suara, A. Sanjaya, and D. Putra Pamungkas, “Implementasi Metode Double Moving Average Untuk Prediksi Produksi Sabun,” Seminar Nasional Inovasi Teknologi, 2022.
M. Azman Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ,” JURNAL SISTEM DAN INFORMATIKA, vol. 13, 2019.
D. Yulianti and A. Momon, “Implementasi Metode Double Moving Average dan Regresi Linier untuk Peramalan Asam Sulfat di PT.XYZ,” vol. VIII, no. 1, 2023.
D. Santika, R. S. Hayati, I. Lazuli, J. Teknik, and I. Potensi Utama, “Penerapan Metode Triple Exponential Smoothing Dalam Prediksi Penanaman Bibit Kelapa Sawit Pada PT. Palmanco Inti Sawit The Application of the Triple Exponential Smoothing Method in the Prediction of Planting Oil Palm Seeds at PT. Palmanco Inti Sawit,” 12. InfoSys Journal, vol. 5, pp. 12–24, 2020.
S. Madianto, E. Utami, and A. D. Hartanto, “Algoritma Triple Exponential Smoothing Untuk Prediksi Trend Turis
Pariwisata Jatim Park Batu saat Pandemi Covid-19,” 2021. [Online]. Available:
http://jurnal.polibatam.ac.id/index.php/JAIC
Indra and Rasjid Nurdina, “PREDIKSI JUMLAH KASUS PENYAKIT DIARE MENGGUNAKAN METODE TRIPLE EXPONENTIAL SMOOTHING (TES),” Dec. 2021.
J. Nangi, S. Hartinah Indrianti, and B. Pramono, “PERAMALAN PERSEDIAAN OBAT MENGGUNAKAN METODE TRIPLE EXPONENTIAL SMOOTHING (TES) (STUDI KASUS : INSTALASI FARMASI RSUD KAB. MUNA),” vol. 4, no. 1, pp. 135–142.
A. Prasetyo and J. Teknologi Informasi dan Komputer Politeknik Negeri Lhokseumawe, “Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda,” Multimedia & Jaringan, vol. 6, no. 2, 2021.
H. Dorthy, E. Sinaga, and N. Irawati, “Penerapan Trend Moment Untuk Meramalkan Penjualan Produksi Kelapa Sawit Di Kebun Buntu Pane, Kabupaten Asahan,” 2022.
W. Fuadi, R. Wandi, and M. W. Pohan, “Aplikasi Geografis Prediksi Hasil Padi Menggunakan Metode Double Moving Average di Kabupaten Aceh Utara,” TECHSI - Jurnal Teknik Informatika, vol. 13, no. 1, p. 50, Apr. 2021, doi: 10.29103/techsi.v13i1.2831.
F. Kusuma et al., “Jurnal Informatika dan Rekayasa Perangkat Lunak Prediksi Jumlah Penduduk Miskin Indonesia menggunakan Metode Single Moving Average dan Double Moving Average,” vol. 3, no. 2, pp. 105–109, 2021.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Triple Exponential Smoothing dan Double Moving Average Untuk Peramalan Produksi Kernel Kelapa Sawit
Pages: 883-893
Copyright (c) 2023 Risfi Ayu Sandika, Siska Kurnia Gusti, Lestari Handayani, Siti Ramadhani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















