Data Mining Untuk Melihat Minat Belajar Siswa Menerapkan Metode K-Means
Abstract
Due to the lack of motivation to learn and learning method using the old method which is very boring, learning planning is currently a burden for educators and educthe ation of children at the junior high level. As a result, the purpose of this study aims at a learning system to create a learning plan for children using ICT. This educational institution known as Al-Furqon can be found in Kadudampit District, Sukabumi Regency. Outdated lecture methods are still used in teaching and learning activities in this school. Because it was previously used as a means of oral communication between teachers and students during the teaching and learning process, this method affects learning in MTs because it cannot be left behind in teaching activities even though it requires more teacher activities than students. Al-Furqon. There was no interesting interaction between students and teachers, and as a result, they became increasingly dissatisfied with traditional teaching approaches, K-Means algorithms and Data Mining techniques were used in the study. Clustering is also used. Data on Teaching Method Value, Learning Facility Value, Grade Condition Value, Environmental Influence Value, and Teacher Professionalism Value were used for testing in this study. to find out students' interests in school by grouping their data and applying K-Means Clustering analysis. It is hoped that after the number of students who are lacking or not interested in learning is identified, it will become the basis for this website design system to be a solution to the problem.
Downloads
References
H. Himawan, “Analisa dan Perancangan Sistem Pembelajaran Online Menggunakan Metode Parsing,” Telemat. J. Inform. dan Teknol. Inf., vol. 7, no. 2, 2015.
M. H. A. Berutu and M. I. H. Tambunan, “Pengaruh minat dan kebiasaan belajar terhadap hasil belajar biologi siswa SMA se-kota Stabat,” J. Biolokus J. Penelit. Pendidik. Biol. dan Biol., vol. 1, no. 2, pp. 109–116, 2018.
R. Fatmawati and M. Rozin, “Peningkatan minat belajar siswa dengan menggunakan metode ceramah interaktif,” J. Focus Action Res. Math. (Factor M), vol. 1, no. 1, pp. 43–56, 2018.
I. M. Pustikayasa, “Grup whatsapp sebagai media pembelajaran,” Widya Genitri J. Ilm. Pendidikan, Agama Dan Kebud. Hindu, vol. 10, no. 2, pp. 53–62, 2019.
S. Oktarian, S. Sarjon Defit, and P. I. Y. Padang, “Klasterisasi Penentuan Minat Siswa dalam Pemilihan Sekolah Menggunakan Metode Algoritma K-Means Clustering,” J. Inf. dan Teknol. Vol, vol. 2, no. 3, pp. 68–75, 2020.
A. Lesmana, “PERBANDINGAN ALGORITMA K-MEANS DAN K-MEDOIDS DALAM PENCLUSTERAN DATA PENJUALAN PT. UNITED TEKNOLOGI INTEGRASI.” Universitas Mercu Buana Jakarta-Menteng, 2022.
S. N. Arofah and F. Marisa, “Penerapan Data Mining untuk Mengetahui Minat Siswa pada Pelajaran Matematika menggunakan Metode K-Means Clustering,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 85–90, 2018.
R. Ordila, R. Wahyuni, Y. Irawan, and M. Y. Sari, “Penerapan Data Mining Untuk Pengelompokan Data Rekam Medis Pasien Berdasarkan Jenis Penyakit Dengan Algoritma Clustering (Studi Kasus: Poli Klinik Pt. Inecda),” J. Ilmu Komput., vol. 9, no. 2, pp. 148–153, 2020.
V. H. Pranatawijaya, W. Widiatry, R. Priskila, and P. B. A. A. Putra, “Penerapan skala Likert dan skala dikotomi pada kuesioner online,” J. Sains Dan Inform., vol. 5, no. 2, pp. 128–137, 2019.
F. E. Sitompul, M. I. Perangin-angin, and A. Azlan, “PENERAPAN DATA MINING UNTUK MENGETAHUI POTENSI PENYEBARAN PENYAKIT DBD MENGGUNAKAN METODE ALGORITMA K-MEANS,” J. Cyber Tech, vol. 2, no. 6, 2019.
A. Bastian, “Penerapan algoritma k-means clustering analysis pada penyakit menular manusia (studi kasus kabupaten Majalengka),” J. Sist. Inf., vol. 14, no. 1, pp. 28–34, 2018.
R. Umar, I. Riadi, and M. Miladiah, “Sistem Identifikasi Keaslian Uang Kertas Rupiah Menggunakan Metode K-Means Clustering,” Techno. Com, vol. 17, no. 2, pp. 179–185, 2018.
N. Butarbutar, A. P. Windarto, D. Hartama, and S. Solikhun, “Komparasi Kinerja Algoritma Fuzzy C-Means Dan K-Means Dalam Pengelompokan Data Siswa Berdasarkan Prestasi Nilai Akademik Siswa,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 1, no. 1, pp. 46–55, 2017.
A. Hendini, “Pemodelan UML sistem informasi monitoring penjualan dan stok barang (studi kasus: distro zhezha pontianak),” J. Khatulistiwa Inform., vol. 4, no. 2, 2016.
D. Zaliluddin and R. Rohmat, “Perancangan Sistem Informasi Penjualan Berbasis Web (Studi Kasus Pada Newbiestore),” INFOTECH J., vol. 4, no. 1, 2018.
M. F. B. Arofah, “LKP: Rancang Bangun Aplikasi Berbasis Website Penilaian Calon Kepala Sekolah pada Dinas Pendidikan Provinsi Jawa Timur Menggunakan Metode Standar Operasional Prosedur (SOP).” Institut Bisnis dan Informatika Stikom Surabaya, 2018.
A. Syukron and N. Hasan, “Perancangan sistem informasi rawat jalan berbasis web pada Puskesmas Winong,” Bianglala Inform., vol. 3, no. 1, 2015.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Data Mining Untuk Melihat Minat Belajar Siswa Menerapkan Metode K-Means
Pages: 775-784
Copyright (c) 2023 Dudih Gustian, Muhamad Salman Al-Farits

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















