Analisis Klasterisasi Kualitas Internet Seluler Menggunakan Metode K-Means dan Gaussian Mixture Model


  • Muhammad Aziiz Irwansyah Universitas Sriwijaya, Palembang, Indonesia
  • Allsela Meiriza * Mail Universitas Sriwijaya, Palembang, Indonesia
  • Dinda Lestarini Universitas Sriwijaya, Palembang, Indonesia
  • (*) Corresponding Author
Keywords: Clustering of Mobile Internet Quality; K-Means; Gaussian Mixture Model; Ookla Open Data; Principal Component Analysis (PCA)

Abstract

This study utilizes internet network data from Ookla Open Data (Speedtest Global Performance), comprising three main variables: download speed, upload speed, and latency. The aim is to analyze the condition and performance of mobile internet networks across 17 regencies/cities in South Sumatera Province in 2025 and to provide data-driven recommendations for the Department of Communication and Informatics to promote equitable and improved digital infrastructure through a Knowledge Discovery in Databases (KDD) approach. The applied methods include RobustScaler for data normalization, Principal Component Analysis (PCA) for dimensionality reduction, and K-Means and Gaussian Mixture Model (GMM) algorithms for clustering regions based on network characteristics. The analysis shows that both algorithms form three clusters (K=3) with distinct patterns. GMM demonstrates higher stability than K-Means, achieving a Silhouette score of 0.426 and Davies–Bouldin Index of 0.284, compared to K-Means with 0.351 and 0.688, while the lower Calinski–Harabasz score of GMM (9.960) indicates a trade-off between cluster compactness and stability, highlighting its adaptive behavior to data variation. Urban areas such as Palembang and Prabumulih belong to the high-performance cluster, whereas Ogan Komering Ulu Selatan lies in the low-performance cluster (18.87 Mbps; 33 ms), revealing a digital gap of approximately 18 Mbps across regions. These findings emphasize the need for equitable digital infrastructure strategies through fiber-optic expansion, BTS capacity enhancement, and multi-stakeholder collaboration toward Indonesia’s Digital Vision 2045.

Downloads

Download data is not yet available.

References

D. Sudiantini, M. P. Ayu, M. Cheirnel, A. Shawirdra, M. A. Prastuti, and M. Apriliya, “Transformasi Digital : Dampak , Tantangan , Dan Peluang Untuk Pertumbuhan Ekonomi Digital,” TRENDING J. Manaj. dan Ekon., vol. 1, no. 3, 2023, doi: 10.30640/trending.v1i3.1115.

Digital2024, “Launching Visi Indonesia Digital 2045: Percepatan Transformasi Digital Demi Wujudkan Indonesia Emas,” kominfo. Accessed: Oct. 20, 2025. [Online]. Available: https://digital2045.id/launching-visi-indonesia-digital-2045-percepatan-transformasi-digital-demi-wujudkan-indonesia-emas/

A. A. Dzikrullah, “Pengelompokan Provinsi Berdasarkan Kualitas Jaringan Internet Dengan Metode Centroid Linkage,” J. Math. Comput. Stat., vol. 5, no. 1, pp. 48–57, 2022, doi: 10.35580/jmathcos.v5i1.32363.

Asosiasi Penyelenggara Jasa Internet Indonesia, “APJII Jumlah Pengguna Internet Indonesia Tembus 221 Juta Orang,” Asosiasi Penyelenggara Jasa Internet Indonesia (APJII). Accessed: Oct. 20, 2025. [Online]. Available: https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang

N. Salsi Anugrah, H. Adilah, D. P. Panggabean, and R. P. Laksana, “Analisis Kecepatan Internet Seluler Di Indonesia Berdasarkan Regional,” J. Data Anal. Information, Comput. Sci., vol. 2, no. 2, pp. 155–158, 2025, doi: 10.70248/jdaics.v2i2.1821.

Ookla LLC, “Speedtest by Ookla Global Fixed and Mobile Network Performance Maps,” Open Data on AWS. Accessed: Oct. 20, 2025. [Online]. Available: https://registry.opendata.aws/speedtest-global-performance/

O. Mar’atun Sholihah, N. Suarna, G. Dwilestari, and N. R, “Implementasi Metode K-Means Clustering Untuk Menganalisa Penerima Bantuan Di Desa Palasah,” J. Inform. dan Teknol. Inf., vol. 2, no. 1, pp. 154–160, 2023, doi: 10.56854/jt.v2i1.123.

S. W. Wijayanti and A. Kesumawati, “Perbandingan Analisis K-means dan Hierarchical Clustering dalam Mengelompokkan Kecamatan di Kabupaten Grobogan Berdasarkan Jumlah Titik Kejadian Bencana Alam,” Emerg. Stat. Data Sci. J., vol. 3, no. 2, pp. 597–617, 2025, doi: 10.20885/esds.vol3.iss.2.art14.

A. Fauzan, N. Suarna, I. Ali, and H. Susana, “Penerapan Algoritma K-Means Clustering Untuk Meningkatkan Model Pengelompokan Dan Kinerja Jaringan Wi-Fi Secara Optimal,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 2, 2025, doi: 10.23960/jitet.v13i2.6272.

P. Chyan, “Segmentasi Kulit Manusia Dengan Ekstraksi Fitur Warna Dan Algoritma GMM-EM,” J. Pendidik. Teknol. Inf., vol. 5, no. 1, pp. 151–156, 2022, doi: 10.37792/jukanti.v5i1.468.

K. E. Setiawan and A. Kurniawan, “Model, Pengelompokan Rumah Sakit Di Jakarta Menggunakan Dbscan, Gaussian Mixture, Dan Hierarchical Clustering,” J. Inform. Terpadu, vol. 9, no. 2, pp. 149–156, 2023, doi: 10.54914/jit.v9i2.995.

G. A. Alde, D. Faiza, and A. Hadi, “Analisis Jaringan Seluler Menggunakan K-Means Clustering untuk Identifikasi Daerah Blank Spot dan Non Blank Spot di Kabupaten Padang Pariaman,” J. Pendidik. Tambusai, vol. 9, no. 2, pp. 27236–27244, 2025, doi: 10.31004/jptam.v9i2.31229.

T. Apriliana and E. Widodo, “Analisis Cluster Hierarki untuk Pengelompokan Provinsi di Indonesia berdasarkan Jumlah Base Transceiver Station dan Kekuatan Sinyal,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 286–296, 2023, doi: 10.24002/konstelasi.v3i2.7143.

R. Watin, N. P. Permatasari, A. W. Wijayanto, and W. Marsisno, “Analisis Cluster Kondisi Keterampilan, Akses dan Fasilitas Teknologi Informasi dan Komunikasi di Indonesia,” Komputika J. Sist. Komput., vol. 13, no. 1, pp. 83–92, 2024, doi: 10.34010/komputika.v13i1.10796.

H. Alizadeh, H. Vranken, A. Zuquete, and A. Miri, “Timely Classification and Verification of Network Traffic Using Gaussian Mixture Models,” IEEE ACCESS, vol. 8, pp. 91287–91302, 2020, doi: 10.1109/ACCESS.2020.2992556.

R. Rahmati and A. W. Wijayanto, “Analisis Cluster Dengan Algoritma K-Means, Fuzzy C-Means Dan Hierarchical Clustering,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 73–80, 2021, doi: 10.26798/jiko.v5i2.422.

J. Han, J. Pei, and H. Tong, Data Mining Concepts and Techniques. Katey Birtcher, 2023.

J. V. Lenda and M. A. I. Pakereng, “Analisis Tingkat Pengangguran Di Kota Palopo Menggunakan Metode K-Means,” Zo. J. Sist. Inf., vol. 6, no. 2, pp. 400–408, 2024, doi: 10.31849/zn.v6i2.20061.

D. Saputri, H. Mustafidah, F. Wibowo, and D. K. Hakim, “Segmentasi Provinsi di Indonesia Berdasarkan Akses Fasilitas Dasar dan Pengeluaran Rumah Tangga Menggunakan K-Means,” J. Sist. Komput. dan Inform., vol. 6, pp. 159–168, 2025, doi: 10.30865/json.v6i4.

V. Sharma, “A Study on Data Scaling Methods for Machine Learning,” Int. J. Glob. Acad. Sci. Res., vol. 1, no. 1, pp. 31–42, 2022, doi: 10.55938/ijgasr.v1i1.4.

D. Wang and Z. Ma, “Carbon meets credit : enhancing corporate ratings using principal component analysis and Gaussian mixture models,” Digit. Econ. Sustain. Dev., vol. 2, no. 23, 2024, doi: 10.1007/s44265-024-00048-z.

E. Elhaik, Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated, vol. 12, no. 1. Nature Publishing Group UK, 2022. doi: 10.1038/s41598-022-14395-4.

T. Rahmawati, Y. Wilandari, and P. Kartikasari, “Analisis Perbandingan Silhouette Coefficient Dan Metode Elbow Pada Pengelompokkan Provinsi Di Indonesia Berdasarkan Indikator Ipm Dengan K-Medoids,” J. Gaussian, vol. 13, no. 1, pp. 13–24, 2024, doi: 10.14710/j.gauss.13.1.13-24.

J. K. Wororomi et al., DATA MINING (Memahami Pola di Balik Angka). EUREKA MEDIA AKSARA, 2021.

I. K. Y. Triantara, M. A. Raharja, and I. B. G. Sarasvananda, “Segmentasi Pelanggan Berbasis RFMT Menggunakan K-Means dan Hierarchical Clustering,” J. Nas. Teknol. Inf. dan Apl., vol. 3, no. 4, pp. 917–924, 2025, doi: https://doi.org/10.58776/jriti.v2i3.156.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Klasterisasi Kualitas Internet Seluler Menggunakan Metode K-Means dan Gaussian Mixture Model

Dimensions Badge
Article History
Submitted: 2025-10-29
Published: 2025-12-11
Abstract View: 150 times
PDF Download: 71 times
How to Cite
Irwansyah, M., Meiriza, A., & Lestarini, D. (2025). Analisis Klasterisasi Kualitas Internet Seluler Menggunakan Metode K-Means dan Gaussian Mixture Model. Building of Informatics, Technology and Science (BITS), 7(3), 1694-1704. https://doi.org/10.47065/bits.v7i3.8615
Issue
Section
Articles