Penerapan Algoritma K-Means Untuk Mengelompokkan Tingkat Stres Akademik Pada Mahasiswa


  • Lusi Diah Wiranti Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elvia Budianita * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Alwis Nazir Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fitri Insani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Reni Susanti Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Academic Stress; Students; Clustering; K-Means; Davies-Bouldin Index; Silhouette Coefficient

Abstract

Academic stress is a prevalent concern among university students, often arising from various challenges within the academic environment. These challenges may include tight assignment deadlines, elevated expectations from both lecturers and parents, ineffective time management, and negative self-assessment. If left unaddressed, such stress can negatively impact students’ academic performance and mental well-being. This study focuses on categorizing student academic stress levels using the K-Means clustering algorithm. Data were collected from 507 participants through a customized version of the Perception of Academic Stress Scale (PASS) questionnaire, adapted to suit the study context. Prior to analysis, the data were preprocessed and converted into a numerical format. Clustering was performed using Python on the Google Colab platform. To assess the clustering performance, two evaluation metrics were used: the Davies-Bouldin Index (DBI) and the Silhouette Coefficient. Lower DBI values suggest that the clusters formed are more compact and distinct from each other, while higher Silhouette values indicate better clustering performance. From the evaluation, the best clustering result was found when the number of clusters was 2, with a DBI score of 1.43 and a Silhouette score of 0.27. Nonetheless, these values still fall short of the ideal range, likely due to the heterogeneous nature of the data, as participants came from five different departments within the Faculty of Science and Technology. Moreover, the number of responses varied across academic years (2021–2023). Cluster 1 comprised 229 students identified as having low levels of academic stress, as shown by their lower questionnaire scores. In contrast, Cluster 2 consisted of 278 students with higher levels of stress, as reflected in their higher scores (ranging from 3 to 5) on positively worded items.

Downloads

Download data is not yet available.

References

F. Andiarna and E. Kusumawati, “Pengaruh Pembelajaran Daring terhadap Stres Akademik Mahasiswa Selama Pandemi Covid-19 Funsu Andiarna, Estri Kusumawati,” Jurnal Psikologi, vol. 16, no. 2, pp. 139–150, Dec. 2020, doi: 10.24014/jp.v14i2.9221.

M. D. Nurmala, T. U. S. H. Wibowo, and A. Rachmayani, “Tingkat Stres Mahasiswa Dalam Pembelajaran Online Pada Masa Pandemi Covid-19,” Jurnal Penelitian Bimbingan dan Konseling, vol. 5, no. 2, pp. 13–23, Dec. 2020, doi: 10.30870/jpbk.v5i2.10108

A. Fiqih and V. Ratnawati, “Mengurai Stres Akademik Mahasiswa Tingkat Akhir: Faktor Pemicu, Dampak Dan Strategi Pengelolaan Di Universitas Nusantara PGRI Kediri,” Semdikjar, vol. 6, pp. 755–765, Aug. 2023.

D. K. Dewi, S. I. Savira, Y. W. Satwik, and R. N. Khoirunnisa, “Profil Perceived Academic Stress pada Mahasiswa Profile of Perceived Academic Stress in Students,” Jurnal Psikologi Teori dan Terapan, vol. 13, no. 3, pp. 395–402, 2022, doi: 10.26740/jptt.v13n3.p395-403

N. M. Yusuf and Yusuf Jannatul Ma’wa, “Faktor-Faktor Yang Mempengaruhi Stres Akademik,” Psyche 165 Journal, vol. 13, pp. 235–239, Jun. 2020, https://doi.org/10.35134/jpsy165.v13i2.84

D. Damayanti, E. A. Trisus, E. Yunanti, B. L. Ingrit, and T. Panjaitan, “Hubungan Tingkat Stres dengan Siklus Menstruasi Mahasiswi,” Jurnal Kedokteran dan Kesehatan, vol. 18, pp. 212–219, Jul. 2022, doi: 10.32536/jrki.v7i2.260

I. Rosyidah, A. R. Efendi, Muh. Am. Arfah, P. A. Jasman, and N. Pratami, “Gambaran Tingkat Stres Akademik Mahasiswa Program Studi Ilmu Keperawatan Fakultas Keperawatan Unhas,” Jurnal Abdi, vol. 2, no. 1, pp. 33–39, Jan. 2020.

S. Syam, Y. Tokoro, L. Judijanto, M. Garonga, M. F. Sinaga, and N. Umar, “Data Mining : Teori dan Penerapannya dalam Berbagai Bidang,” PT. Sonpedia Publishing Indonesia, Jambi, 2024.

N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM), vol. 3, no. 1, pp. 46–56, Mar. 2024, doi: 10.58602/jima-ilkom.v3i1.26.

D. Haryadi, “Penerapan Algoritma K-Means Clustering Pada Produksi Perkebunan Kelapa Sawit Menurut Provinsi,” Journal of Informatics and Communication Technology (JICT), vol. 3, no. 1, pp. 50–64, Jul. 2021, doi: 10.52661/j_ict.v3i1.71.

T. Solang and A. Nugroho, “Analisis Kesehatan Mental Mahasiswa Universitas Kristen Satya Wacana Menggunakan Metode Clustering Algoritma K-Means,” Jurnal TEKINKOM, vol. 6, no. 1, 2023, doi: 10.37600/tekinkom.v6i1.641.

S. Natalia Br Sembiring, H. Winata, S. Kusnasari, S. Informasi, and S. Triguna Dharma, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” Jurnal Sistem Informasi Tgd, vol. 1, pp. 31–40, Jan. 2022, https://doi.org/10.53513/jursi.v1i1.4784

M. Norshahlan, H. Jaya, and R. Kustini, “Penerapan Metode Clustering Dengan Algoritma K-means Pada Pengelompokan Data Calon Siswa Baru,” Jurnal Sistem Informasi TGD, vol. 2, no. 6, 2023, https://doi.org/10.30743/INFOTEKJAR.V1I2.70

J. Wijaya, T. Magdalena, A. Januaviani, and K. Kunci, “Clustering Faktor Stres Pada Mahasiswa Aktif Menggunakan Algoritma K-Means Dan K-Modes,” Multidisciplinary Scientific Journal, vol. 2, pp. 907–917, Feb. 2024, https://doi.org/10.57185/mutiara.v2i2.137

D. Gultom et al., “Penerapan Algoritma K-Means Untuk Mengetahui Tingkat Tindak Kejahatan Daerah Pematangsiantar,” Jurnal Teknologi Informasi, vol. 4, no. 1, 2020, doi: 10.36294/jurti.v4i1.1263

R. Rahmawati and W. A. Wijayanto, “Analisis Cluster Dengan Algoritma K-Means, Fuzzy C-Means Dan Hierarchical Clustering (Studi Kasus: Indeks Pembangunan Manusia tahun 2019),” Jurnal Informatika dan Komputer, vol. 5, no. 2, p. 73, Feb. 2021, doi: 10.26798/jiko.v5i2.422

N. T. Luchia, H. Handayani, F. S. Hamdi, D. Erlangga, and S. F. Octavia, “Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 2, pp. 35–41, Sep. 2022, doi: 10.57152/malcom.v2i2.422.

W. R. Murdhiono and V. Vidayanti, “Examining Academic Stress and Its Source Among Nursing Professional Students (Ners) Using the Modified Perception of Academic Stress Scale (PAS),” Indonesian Nursing Journal Of Education And Clinic (Injec), vol. 7, no. 1, p. 2, Jun. 2022, doi: 10.24990/injec.v7i1.441.

M. A. Hudin and S. M. Budiani, “Hubungan antara Workplace Well-Being dengan Kinerja Karyawan pada PT. X di Sidoarjo Hudin,” Jurnal Penelitian Psikologi, 2021, https://doi.org/10.26740/cjpp.v8i4.41192

M. Cui, “Introduction to the K-Means Clustering Algorithm Based on the Elbow Method,” Accounting, Auditing and Finance, vol. 1, pp. 5–8, Oct. 2020, doi: 10.23977/accaf.2020.010102.

P. W. Rahayu, I. G. I. Sudipa, Suryani, and A. Ridwan, BUKU AJAR DATA MINING. 2024. [Online]. Available: https://www.researchgate.net/publication/377415198

F. Amin, D. S. Anggraeni, and Q. Aini, “Penerapan Metode K-Means dalam Penjualan Produk Souq.Com,” Applied Information System and Management (AISM), vol. 5, no. 1, pp. 7–14, Apr. 2022, doi: 10.15408/aism.v5i1.22534.

R. Ishak, “Clustering Prestasi Akademik Lulusan Menggunakan Metode K-Means,” Jambura Journal of Electrical and Electronics Engineering, vol. 6, pp. 76–81, Jan. 2024, https://doi.org/10.37905/jjeee.v6i1.23967

R. K. Dinata, Bustami, and S. Retno, “Optimizing the Evaluation of K-means Clustering Using the Weight Product,” Revue d’Intelligence Artificielle, vol. 38, no. 4, pp. 1223–1233, Aug. 2024, doi: 10.18280/ria.380416.

Y. A. Wijaya, D. A. Kurniady, E. Setyanto, W. S. Tarihoran, D. Rusmana, and R. Rahim, “Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities,” TEM Journal, vol. 10, no. 3, pp. 1099–1103, Aug. 2021, doi: 10.18421/TEM103-13.

T. Rahmawati, Y. Wilandari, and P. Kartikasari, “Analisis Perbandingan Silhouette Coefficient Dan Metode Elbow Pada Pengelompokkan Provinsi Di Indonesia Berdasarkan Indikator Ipm Dengan K-Medoids,” Jurnal Gaussian, vol. 13, no. 1, pp. 13–24, Aug. 2024, doi: 10.14710/j.gauss.13.1.13-24.

S. Paembonan, H. Abduh, and K. Kunci, “Penerapan Metode Silhouette Coeficient Untuk Evaluasi Clutering Obat Clustering; K-means; Silhouette coeficient,” PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 6, no. 2, Sep. 2021, https://doi.org/10.51557/pt_jiit.v6i2.659


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Means Untuk Mengelompokkan Tingkat Stres Akademik Pada Mahasiswa

Dimensions Badge
Article History
Submitted: 2025-05-20
Published: 2025-06-13
Abstract View: 425 times
PDF Download: 105 times
How to Cite
Wiranti, L., Budianita, E., Nazir, A., Insani, F., & Susanti, R. (2025). Penerapan Algoritma K-Means Untuk Mengelompokkan Tingkat Stres Akademik Pada Mahasiswa. Building of Informatics, Technology and Science (BITS), 7(1), 400-409. https://doi.org/10.47065/bits.v7i1.7410
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>