Penerapan Algoritma K-Means Untuk Mengelompokkan Tingkat Stres Akademik Pada Mahasiswa
Abstract
Academic stress is a prevalent concern among university students, often arising from various challenges within the academic environment. These challenges may include tight assignment deadlines, elevated expectations from both lecturers and parents, ineffective time management, and negative self-assessment. If left unaddressed, such stress can negatively impact students’ academic performance and mental well-being. This study focuses on categorizing student academic stress levels using the K-Means clustering algorithm. Data were collected from 507 participants through a customized version of the Perception of Academic Stress Scale (PASS) questionnaire, adapted to suit the study context. Prior to analysis, the data were preprocessed and converted into a numerical format. Clustering was performed using Python on the Google Colab platform. To assess the clustering performance, two evaluation metrics were used: the Davies-Bouldin Index (DBI) and the Silhouette Coefficient. Lower DBI values suggest that the clusters formed are more compact and distinct from each other, while higher Silhouette values indicate better clustering performance. From the evaluation, the best clustering result was found when the number of clusters was 2, with a DBI score of 1.43 and a Silhouette score of 0.27. Nonetheless, these values still fall short of the ideal range, likely due to the heterogeneous nature of the data, as participants came from five different departments within the Faculty of Science and Technology. Moreover, the number of responses varied across academic years (2021–2023). Cluster 1 comprised 229 students identified as having low levels of academic stress, as shown by their lower questionnaire scores. In contrast, Cluster 2 consisted of 278 students with higher levels of stress, as reflected in their higher scores (ranging from 3 to 5) on positively worded items.
Downloads
References
F. Andiarna and E. Kusumawati, “Pengaruh Pembelajaran Daring terhadap Stres Akademik Mahasiswa Selama Pandemi Covid-19 Funsu Andiarna, Estri Kusumawati,” Jurnal Psikologi, vol. 16, no. 2, pp. 139–150, Dec. 2020, doi: 10.24014/jp.v14i2.9221.
M. D. Nurmala, T. U. S. H. Wibowo, and A. Rachmayani, “Tingkat Stres Mahasiswa Dalam Pembelajaran Online Pada Masa Pandemi Covid-19,” Jurnal Penelitian Bimbingan dan Konseling, vol. 5, no. 2, pp. 13–23, Dec. 2020, doi: 10.30870/jpbk.v5i2.10108
A. Fiqih and V. Ratnawati, “Mengurai Stres Akademik Mahasiswa Tingkat Akhir: Faktor Pemicu, Dampak Dan Strategi Pengelolaan Di Universitas Nusantara PGRI Kediri,” Semdikjar, vol. 6, pp. 755–765, Aug. 2023.
D. K. Dewi, S. I. Savira, Y. W. Satwik, and R. N. Khoirunnisa, “Profil Perceived Academic Stress pada Mahasiswa Profile of Perceived Academic Stress in Students,” Jurnal Psikologi Teori dan Terapan, vol. 13, no. 3, pp. 395–402, 2022, doi: 10.26740/jptt.v13n3.p395-403
N. M. Yusuf and Yusuf Jannatul Ma’wa, “Faktor-Faktor Yang Mempengaruhi Stres Akademik,” Psyche 165 Journal, vol. 13, pp. 235–239, Jun. 2020, https://doi.org/10.35134/jpsy165.v13i2.84
D. Damayanti, E. A. Trisus, E. Yunanti, B. L. Ingrit, and T. Panjaitan, “Hubungan Tingkat Stres dengan Siklus Menstruasi Mahasiswi,” Jurnal Kedokteran dan Kesehatan, vol. 18, pp. 212–219, Jul. 2022, doi: 10.32536/jrki.v7i2.260
I. Rosyidah, A. R. Efendi, Muh. Am. Arfah, P. A. Jasman, and N. Pratami, “Gambaran Tingkat Stres Akademik Mahasiswa Program Studi Ilmu Keperawatan Fakultas Keperawatan Unhas,” Jurnal Abdi, vol. 2, no. 1, pp. 33–39, Jan. 2020.
S. Syam, Y. Tokoro, L. Judijanto, M. Garonga, M. F. Sinaga, and N. Umar, “Data Mining : Teori dan Penerapannya dalam Berbagai Bidang,” PT. Sonpedia Publishing Indonesia, Jambi, 2024.
N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM), vol. 3, no. 1, pp. 46–56, Mar. 2024, doi: 10.58602/jima-ilkom.v3i1.26.
D. Haryadi, “Penerapan Algoritma K-Means Clustering Pada Produksi Perkebunan Kelapa Sawit Menurut Provinsi,” Journal of Informatics and Communication Technology (JICT), vol. 3, no. 1, pp. 50–64, Jul. 2021, doi: 10.52661/j_ict.v3i1.71.
T. Solang and A. Nugroho, “Analisis Kesehatan Mental Mahasiswa Universitas Kristen Satya Wacana Menggunakan Metode Clustering Algoritma K-Means,” Jurnal TEKINKOM, vol. 6, no. 1, 2023, doi: 10.37600/tekinkom.v6i1.641.
S. Natalia Br Sembiring, H. Winata, S. Kusnasari, S. Informasi, and S. Triguna Dharma, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” Jurnal Sistem Informasi Tgd, vol. 1, pp. 31–40, Jan. 2022, https://doi.org/10.53513/jursi.v1i1.4784
M. Norshahlan, H. Jaya, and R. Kustini, “Penerapan Metode Clustering Dengan Algoritma K-means Pada Pengelompokan Data Calon Siswa Baru,” Jurnal Sistem Informasi TGD, vol. 2, no. 6, 2023, https://doi.org/10.30743/INFOTEKJAR.V1I2.70
J. Wijaya, T. Magdalena, A. Januaviani, and K. Kunci, “Clustering Faktor Stres Pada Mahasiswa Aktif Menggunakan Algoritma K-Means Dan K-Modes,” Multidisciplinary Scientific Journal, vol. 2, pp. 907–917, Feb. 2024, https://doi.org/10.57185/mutiara.v2i2.137
D. Gultom et al., “Penerapan Algoritma K-Means Untuk Mengetahui Tingkat Tindak Kejahatan Daerah Pematangsiantar,” Jurnal Teknologi Informasi, vol. 4, no. 1, 2020, doi: 10.36294/jurti.v4i1.1263
R. Rahmawati and W. A. Wijayanto, “Analisis Cluster Dengan Algoritma K-Means, Fuzzy C-Means Dan Hierarchical Clustering (Studi Kasus: Indeks Pembangunan Manusia tahun 2019),” Jurnal Informatika dan Komputer, vol. 5, no. 2, p. 73, Feb. 2021, doi: 10.26798/jiko.v5i2.422
N. T. Luchia, H. Handayani, F. S. Hamdi, D. Erlangga, and S. F. Octavia, “Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 2, pp. 35–41, Sep. 2022, doi: 10.57152/malcom.v2i2.422.
W. R. Murdhiono and V. Vidayanti, “Examining Academic Stress and Its Source Among Nursing Professional Students (Ners) Using the Modified Perception of Academic Stress Scale (PAS),” Indonesian Nursing Journal Of Education And Clinic (Injec), vol. 7, no. 1, p. 2, Jun. 2022, doi: 10.24990/injec.v7i1.441.
M. A. Hudin and S. M. Budiani, “Hubungan antara Workplace Well-Being dengan Kinerja Karyawan pada PT. X di Sidoarjo Hudin,” Jurnal Penelitian Psikologi, 2021, https://doi.org/10.26740/cjpp.v8i4.41192
M. Cui, “Introduction to the K-Means Clustering Algorithm Based on the Elbow Method,” Accounting, Auditing and Finance, vol. 1, pp. 5–8, Oct. 2020, doi: 10.23977/accaf.2020.010102.
P. W. Rahayu, I. G. I. Sudipa, Suryani, and A. Ridwan, BUKU AJAR DATA MINING. 2024. [Online]. Available: https://www.researchgate.net/publication/377415198
F. Amin, D. S. Anggraeni, and Q. Aini, “Penerapan Metode K-Means dalam Penjualan Produk Souq.Com,” Applied Information System and Management (AISM), vol. 5, no. 1, pp. 7–14, Apr. 2022, doi: 10.15408/aism.v5i1.22534.
R. Ishak, “Clustering Prestasi Akademik Lulusan Menggunakan Metode K-Means,” Jambura Journal of Electrical and Electronics Engineering, vol. 6, pp. 76–81, Jan. 2024, https://doi.org/10.37905/jjeee.v6i1.23967
R. K. Dinata, Bustami, and S. Retno, “Optimizing the Evaluation of K-means Clustering Using the Weight Product,” Revue d’Intelligence Artificielle, vol. 38, no. 4, pp. 1223–1233, Aug. 2024, doi: 10.18280/ria.380416.
Y. A. Wijaya, D. A. Kurniady, E. Setyanto, W. S. Tarihoran, D. Rusmana, and R. Rahim, “Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities,” TEM Journal, vol. 10, no. 3, pp. 1099–1103, Aug. 2021, doi: 10.18421/TEM103-13.
T. Rahmawati, Y. Wilandari, and P. Kartikasari, “Analisis Perbandingan Silhouette Coefficient Dan Metode Elbow Pada Pengelompokkan Provinsi Di Indonesia Berdasarkan Indikator Ipm Dengan K-Medoids,” Jurnal Gaussian, vol. 13, no. 1, pp. 13–24, Aug. 2024, doi: 10.14710/j.gauss.13.1.13-24.
S. Paembonan, H. Abduh, and K. Kunci, “Penerapan Metode Silhouette Coeficient Untuk Evaluasi Clutering Obat Clustering; K-means; Silhouette coeficient,” PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 6, no. 2, Sep. 2021, https://doi.org/10.51557/pt_jiit.v6i2.659
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Means Untuk Mengelompokkan Tingkat Stres Akademik Pada Mahasiswa
Pages: 400-409
Copyright (c) 2025 Lusi Diah Wiranti, Elvia Budianita, Alwis Nazir, Fitri Insani, Reni Susanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















