Pengelompokan Tingkat Stres Akademik Pada Mahasiswa Menggunakan Algoritma K-Medoids
Abstract
Academic stress is one of the common problems issues by university students due to heavy with heavy workloads, grade pressure, and various academic This condition can have a negatively impact on mental health, productivity and overall academic performance. In the long term, unmaged stress may lead serious psychological disorders. Therefore, it is important to accurately identify and classify the levels of academic stress. This study aims to cluster students’ academic stress levels by utilizing the K-Medoids algorithm. The data analyzed in the research were collected through questionnaires that were filled out by 507 students from the 2021-2023 cohorts, based on a modified version of the Perception of Academic Stress Scale (PASS). The results show that the K-medoids algorithm successfully clustered the data in 2 groups: cluster 0, which represents a moderate stress level with 212 students, and cluster 1, which indicates a high stress level with 295 students. This high-stress cluster exhibited higher average cores on questions 12 and 13 (score 3-5), which fall under the favorable category and are suspected to be the main triggers of academic stress among students in this group. Based on two evalutation metrics-Silhouette Coeficient and Davies-Bouldin Index (DBI)-it can be concluded that the optimal number of clusters for this data set is K=2. However, the clustering separation was not optimal due to he variation in study programs and the uneven distribution of respondets across academic years. This research is expected to provide direction the development intervation policies and strategies to support student welfare.
Downloads
References
S. T. Aula, R. N. Shifa, and D. K. Aini, “Analisis Strategi Management Waktu dalam Meningkatkan Produktivitas Belajar Untuk Menghindari Stress Akademik Pada Mahasiswa,” Observasi : Jurnal Publikasi Ilmu Psikologi, vol. 2, no. 3, pp. 91–113, Aug. 2024, doi: 10.61132/observasi.v2i3.467.
M. Prima Yuda, I. Mawarti, and M. Mutmainnah, “Gambaran Tingkat Stres Akademik Mahasiswa dalam Menyelesaikan Tugas Akhir Skripsi di Fakultas Kedokteran dan Ilmu Kesehatan Universitas Jambi,” Pinang Masak Nursing Journal, vol. 2, no. 1, p. 38, Jun. 2023
A. H. Azizah, S. Warsini, and K. P. Yuliandari, “Hubungan Stres Akademik dengan Kecenderungan Depresi Mahasiswa Ilmu Keperawatan Universitas Gadjah Mada pada Masa Transisi Pandemi COVID-19,” Jurnal Keperawatan Klinis dan Komunitas (Clinical and Community Nursing Journal), vol. 7, no. 2, p. 114, Jul. 2023, doi: 10.22146/jkkk.84827.
E. M. Ladapase and A. Sona, “Gambaran Stres Akademik pada Mahasiswa Universitas Nusa Nipa Indonesia di Maumere,” Empowerment Jurnal Mahasiswa Psikologi Universitas Buana Perjuangan Karawang, vol. 2, no. 1, Jul. 2022.
R. Widohardhono, N. Rachman, and M. Jannah, “Dampak Aktivitas Olahraga terhadap Stres Akademik pada Peserta Didik,” vol. 19, no. 1, pp. 93–103, 2024
D. K. Dewi, S. I. Savira, Y. W. Satwik, and R. N. Khoirunnisa, “Profil Perceived Academic Stress pada Mahasiswa Profile of Perceived Academic Stress in Students,” Jurnal Psikologi Teori dan Terapan, vol. 13, no. 3, pp. 395–402, 2022.
F. Sulianta, Buku Dasar Data Mining from A to Z. 2024. [Online]. Available: https://www.researchgate.net/publication/377018853_Buku_Dasar_Data_Mining_from_A_to_Z_-_Feri_SLN_Free
S. Syam, Y. Tokoro, L. Judijanto, M. Garonga, M. F. Sinaga, and N. Umar, “Data Mining : Teori dan Penerapannya dalam Berbagai Bidang,” Jambi: PT. Sonpedia Publishing Indonesia, 2024.
R. A. Ananda, Y. Maulita, and H. Khair, “Clustering Menggunakan Algoritma K-Means untuk Mengelompokan Data Perjudian Berdasarkan Wilayah di Kota Binjai (Studi Kasus : Pengadilan Negeri Binjai),” Switch : Jurnal Sains dan Teknologi Informasi, vol. 2, no. 4, pp. 167–180, Sep. 2024, doi: 10.62951/switch.v2i4.226.
H. Ningrum, E. Irawan, M. R. Lubis, “Implementasi K-Medoids Dalam Pengelompokan Data Penyakit Alergi Pada Anak,” Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), vol. 6, pp. 130–139, Feb. 2021
A. Triansyah, D. E. Herwindiati, and J. Hendryli, “Perbandingan K-Means dan K-Medoids untuk Klastering Tingkat Stres pada Manusia,” Jurnal Ilmu Komputer dan Sistem Informasi, 2022.
S. Nurlaela, A. Primajaya, and T. N. Padilah, “Algoritma K-Medoids untuk Clustering Penyakit Maag di Kabupaten Karawang,” Jurnal Informatika, Manajemen dan Komputer, vol. 12, no. 2, 2020.
I. Khoirunisa, R. Astuti, T. Suprapti, “Penerapan Algoritma K-Medoids dalam Menentukan Cluster Kabupaten dan Kota Berdasarkan Populasi Peternakan di Provinsi Jawa Barat,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 6, Dec, 2023.
R. Wahyusari, “Penerapan Algoritma K-Medoids Untuk Mengelompokkan Status Obesitas,” SIMETRIS, vol. 18, no. 1, Juni, 2024.
U. Linarti, A. Rahmawati, A. H. S. Jones, and L. Zahrotun, “Penerapan Metode K-Medoids Guna Pengelompokan Data Usaha Mikro, Kecil dan Menengah (UMKM) Bidang Kuliner Di Kota Yogyakarta,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 7, no. 1, pp. 37–45, 2024.
W. R. Murdhiono and V. Vidayanti, “Examining Academic Stress and Its Source Among Nursing Professional Students (Ners) Using the Modified Perception of Academic Stress Scale (PAS),” Indonesian Nursing Journal of Education and Clinic (INJEC), vol. 7, no. 1, p. 2, Jun. 2022, doi: 10.24990/injec.v7i1.441.
M. H. Fathoni and M. Alwi, “Hubungan antara Regulasi Diri dan Resiliensi dalam Mengerjakan Skripsi pada Mahasiswa Program Studi Pendidikan Agama Islam di Institut Agama Islam Ibrahimy Banyuwangi,” Sociocouns: Journal of Islamic Guidance and Counseling, vol. 1, pp. 1–17, 2021.
S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R. H. Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering dalam Pengelompokan Penyebaran Covid-19 di Indonesia,” Jurnal Teknologi Informasi, vol. 4, no. 1, 2020.
A. Atira and B. N. Sari, “Penerapan Silhouette Coefficient, Elbow Method dan Gap Statistics untuk Penentuan Cluster Optimum dalam Pengelompokkan Provinsi di Indonesia Berdasarkan Indeks Kebahagiaan,” Jurnal Ilmiah Wahana Pendidikan, vol. 9, no. 17, pp. 76–86, 2023, doi: 10.5281/zenodo.8282638.
T. Rahmawati, Y. Wilandari, and P. Kartikasari, “Analisis Perbandingan Silhouette Coefficient dan Metode Elbow pada Pengelompokkan Provinsi di Indonesia Berdasarkan Indikator IPM dengan K-Medoids,” Jurnal Gaussian, vol. 13, no. 1, pp. 13–24, Aug. 2024, doi: 10.14710/j.gauss.13.1.13-24.
W. Gie and D. Jollyta, “Perbandingan Euclidean dan Manhattan Untuk Optimasi Cluster Menggunakan Davies Bouldin Index: Status Covid-19 Wilayah Riau,” Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), vol. 2, pp. 187–191, 2020.
G. B. Kaligis and S. Yulianto, “Analisa Perbandingan Algoritma K-Means, K-Medoids, Dan X-Means untuk Pengelompokkan Kinerja Pegawai (Studi Kasus: Sekretariat DPRD Provinsi Sulawesi Utara),” IT-EXPLORE Jurnal Penerapan Teknologi Informasi dan Komunikasi, vol. 1, pp. 179–193, Oct. 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pengelompokan Tingkat Stres Akademik Pada Mahasiswa Menggunakan Algoritma K-Medoids
Pages: 344-353
Copyright (c) 2025 Nova Siska Nurfadilah, Elvia Budianita, Alwis Nazir, Fitri Insani, Reni Susanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















