Analisis Sentimen Masyarakat Menggunakan Algoritma Long Short Term Memory (LSTM) Pada Ulasan Aplikasi Halodoc
Abstract
Halodoc is a digital healthcare platform that provides users with convenient access to medical services online. This study aims to analyze public sentiment toward the Halodoc application based on 1,416 user reviews collected during the period from July to September 2024. The reviews are categorized into three sentiment classes: positive, negative, and neutral, using the Long Short-Term Memory (LSTM) algorithm. Prior to classification, the Word2Vec technique is applied to transform the words in the reviews into numerical vector representations for processing by the model. The analysis revealed that a portion of the reviews expressed negative sentiments, mainly concerning delays in medication delivery and slow responses from customer service. Model performance evaluation shows that the implementation of the LSTM algorithm optimized with the Adam (Adaptive Moment Estimation) optimizer and a dropout rate of 0.2 achieved the highest accuracy of 89.40% and an F1-score of 88.63%. These results indicate that the model performs very well in classifying sentiments and can be used as a useful tool for understanding user satisfaction with the Halodoc application.
Downloads
References
U. I. Wakhida and S. Sanaji, “Peran Perceived Usefulness dan Perceived Risk sebagai Variabel Pemediasi pada Pengaruh Perceived Ease of Use dan e-WOM Negatif terhadap Niat Pembelian Para Pengguna Aplikasi Layanan Kesehatan Halodoc,” J. Ilmu Manaj., vol. 8, no. 4, p. 1158, 2020, doi: 10.26740/jim.v8n4.p1158-1174.
Y. E. Kristianto, “Strategy of Technology Acceptance Model Utilization for Halodoc, a Telehealth Mobile Application with Task Technology Fit as Moderator Variable,” Int. J. Innov. Sci. Res. Technol., vol. 6, no. 8, 2021, [Online]. Available: www.ijisrt.com192
H. Herwando and T. H. Sitompul, “Evaluasi Manfaat Penerapan Telemedicine di Negara Kepulauan: Systematic Literature Review,” Indones. Heal. Inf. Manag. J., vol. 9, no. 2, pp. 91–101, 2021, doi: 10.47007/inohim.v9i2.261.
E. Setiawan and J. S. Suroso, “Analisis Faktor-Faktor yang Mempengaruhi Penggunaan dan Kepuasan Pengguna Aplikasi Halodoc,” J. Pendidik. dan Konseling Vol., vol. 4, no. 5, pp. 4850–4862, 2022, [Online]. Available: https://journal.universitaspahlawan.ac.id/index.php/jpdk/article/view/7397
P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1020, 2022, doi: 10.30865/jurikom.v9i4.4673.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.
D. A. C. Rachman, R. Goejantoro, and F. D. T. Amijaya, “Implementasi Text Mining Pengelompokkan Dokumen Skripsi Menggunakan Metode K-Means Clustering,” Eksponensial, vol. 11, no. 2, p. 167, 2021, doi: 10.30872/eksponensial.v11i2.660.
T. P. Nugrahanti, N. Puspitasari, and I. R. Andaningsih, “Transformasi Praktik Akuntansi Melalui Teknologi: Peran Kecerdasan Buatan, Analisis Data, dan Blockchain dalam Otomatisasi Proses Akuntansi,” J. Akunt. Dan Keuang. West Sci., vol. 2, no. 03, pp. 213–221, 2023, doi: 10.58812/jakws.v2i03.644.
Ernianti Hasibuan and Elmo Allistair Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” J. Tek. dan Sci., vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.
D. Diandra Audiansyah, D. Eka Ratnawati, and B. Trias Hanggara, “Analisis Sentimen Aplikasi MyXL menggunakan Metode Support Vector Machine berdasarkan Ulasan Pengguna di Google Play Store,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 8, pp. 3987–3994, 2022, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/11484
M. M. Maarif and N. Setiyawati, “Analisis Sentimen Review Aplikasi LinkedIn di Google Play Store Menggunakan Support Vector Machine,” Progresif J. Ilm. Komput., vol. 20, no. 1, p. 454, 2024, doi: 10.35889/progresif.v20i1.1614.
N. Giarsyani, “Komparasi Algoritma Machine Learning dan Deep Learning untuk Named Entity Recognition : Studi Kasus Data Kebencanaan,” Indones. J. Appl. Informatics, vol. 4, no. 2, p. 138, 2020, doi: 10.20961/ijai.v4i2.41317.
M. R. S. Alfarizi, M. Z. Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning,” Karya Ilm. Mhs. Bertauhid (KARIMAH TAUHID), vol. 2, no. 1, pp. 1–6, 2023.
I. P. Ramayasa, I. G. Ayu, D. Saryanti, and I. K. Dharmendra, “Perbandingan Metode Vektorisasi Pada Analisa Sentiment, Studi Kasus : Cyberbullying Pada Komentar Instagram,” J. Teknol. Inf. dan Komput., vol. 9, pp. 505–512, 2023.
I. A. Pradana, A. D. Rahajoe, and A. N. Sihananto, “Pengembangan Aplikasi Pendeteksi Keretakan Jalan Berbasis Android Dengan Iimplementasi Algoritma Hybrid CNN-LSTM,” vol. 5, no. 2, pp. 1–10, 2024.
S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.
Z. W. Farida and N. Rochmawati, “Analisis Sentimen Masyarakat terhadap Fenomena Childfree Menggunakan Metode Long Short Term Memory dan Bidirectional Encoder Representations from Transformers di Twitter,” J. Informatics Comput. Sci., vol. 5, no. 03, pp. 369–376, 2024, [Online]. Available: https://ejournal.unesa.ac.id/index.php/jinacs/article/view/58142%0Ahttps://ejournal.unesa.ac.id
I. Azizah, I. Cholissodin, and N. Yudistira, “Analisis Sentimen Ulasan Pengguna Aplikasi Shopee di Google Play menggunakan Metode Word Embedding dan Long Short Term Memory (LSTM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, pp. 2453–2459, 2023.
A. Hendra and F. Fitriyani, “Analisis Sentimen Review Halodoc Menggunakan Nai ̈ve Bayes Classifier,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 2, pp. 78–89, 2021, doi: 10.14421/jiska.2021.6.2.78-89.
K. Dashtipour, M. Gogate, A. Adeel, H. Larijani, and A. Hussain, “Sentiment analysis of persian movie reviews using deep learning,” Entropy, vol. 23, no. 5, pp. 1–16, 2021, doi: 10.3390/e23050596.
S. Mutmatimah, Khairunnas, and Khairunnisa, “Metode Deep Learning LSTM dalam Analisis Sentimen Aplikasi PeduliLindungi,” J. Comput. Sci. Informatics, vol. 1, no. 1, pp. 9–19, 2024, doi: 10.34304/scientific.v1i1.231.
Y. Ardian Pradana, I. Cholissodin, and D. Kurnianingtyas, “Analisis Sentimen Pemindahan Ibu Kota Indonesia pada Media Sosial Twitter menggunakan Metode LSTM dan Word2Vec,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, pp. 2389–2397, 2023, [Online]. Available: http://j-ptiik.ub.ac.id
T. Astuti and Y. Astuti, “Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO),” J. Media Inform. Budidarma, vol. 6, no. 4, p. 1806, 2022, doi: 10.30865/mib.v6i4.4119.
S. F. Pane and J. Ramdan, “Pemodelan Machine Learning : Analisis Sentimen Masyarakat Terhadap Kebijakan PPKM Menggunakan Data Twitter,” J. Sist. Cerdas, vol. 5, no. 1, pp. 12–20, 2022, doi: 10.37396/jsc.v5i1.191.
W. Andriyani, Y. Astuti, and B. A. Wisesa, “Analisis Sentimen pada Ulasan Produk dengan SVM dan Word2Vec Sentiment Analysis on Product Reviews with SVM and Word2Vec,” JIKO (Jurnal Inform. dan Komputer), vol. 9, no. 1, pp. 173–185, 2024, doi: 10.26798/jiko.v8i1.1498.
Y. Romadhoni and K. F. H. Holle, “Analisis Sentimen Terhadap PERMENDIKBUD No.30 pada Media Sosial Twitter Menggunakan Metode Naive Bayes dan LSTM,” J. Inform. J. Pengemb. IT, vol. 7, no. 2, pp. 118–124, 2022, doi: 10.30591/jpit.v7i2.3191.
M. F. Rahman, D. Alamsah, M. I. Darmawidjadja, and I. Nurma, “Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN),” J. Inform., vol. 11, no. 1, p. 36, 2017, doi: 10.26555/jifo.v11i1.a5452.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Masyarakat Menggunakan Algoritma Long Short Term Memory (LSTM) Pada Ulasan Aplikasi Halodoc
Pages: 920-928
Copyright (c) 2025 Nelvi Yulianti, M Afdal, Muhammad Jazman, Megawati Megawati, Anofrizen Anofrizen

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















