Analisis Perbandingan Naïve Bayes dan Neural Network dalam Klasifikasi Minat Masyarakat pada Kursus Komputer

Nabila Syah Fitria1, Sudi Suryadi2, Fitri Aini Nasution3,*


  • Nabila Syah Fitria Universitas Labuhanbatu, Rantauprapat, Indonesia
  • Sudi Suryadi Universitas Labuhanbatu, Rantauprapat, Indonesia
  • Fitri Aini Nasution * Mail Universitas Labuhanbatu, Rantauprapat, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Naïve Bayes; Neural Network; Classification; Model Evaluation

Abstract

In the digital era, the use of technology in education is growing, especially in improving people's digital literacy through computer courses. To analyze people's interest in courses, a data mining-based approach is needed that can process large amounts of data and identify certain patterns. Naïve Bayes and Neural Network are two widely used classification methods, where Naïve Bayes works based on independent probabilities between features, while Neural Network uses artificial neural networks to capture more complex patterns. This study aims to compare the two methods in classifying people's interest in LKP Ibay Komputer and evaluate the accuracy of each model. The classification results show that both methods produce the same predictions, namely 53 data are categorized as interested and 20 data as not interested. The model accuracy reaches 100%, indicating very high classification performance. Although these results seem ideal, perfect accuracy like this often raises questions regarding the validity and robustness of the model in real-world scenarios. Factors such as relatively small dataset sizes, overly structured data patterns, or lack of variation in training data can cause results that appear too good. Therefore, it is important to conduct additional evaluations such as cross-validation or testing on different datasets to ensure that the model does not experience overfitting and remains reliable in broader predictions. With these results, it can be concluded that both Naïve Bayes and Neural Networks have optimal performance in classifying people's interest in computer courses, but the choice of method can be adjusted according to needs, where Naïve Bayes excels in computational efficiency, while Neural Networks are more adaptive to more complex data.

Downloads

Download data is not yet available.

References

Putri Ayu Negara, Yuni Yulistianti, Elsit Julia Pratiwi, and Yusup Saeful bayan, “Pentingnya Pemanfaatan Teknologi Informasi Dalam Bidang Pendidikan Di Desa Mekar Asih,” J. Abdi Nusa, vol. 3, no. 3, pp. 208–213, 2023, doi: 10.52005/abdinusa.v3i3.197.

M. Sari, G. J. Yanris, and M. N. S. Hasibuan, “Analysis of the Neural Network Method to Determine Interest in Buying Pertamax Fuel,” SinkrOn, vol. 8, no. 2, pp. 1031–1039, 2023, doi: 10.33395/sinkron.v8i2.12292.

A. P. Siregar, D. Irmayani, and M. N. Sari, “Analysis of the Naïve Bayes Method for Determining Social Assistance Eligibility Public,” SinkrOn, vol. 8, no. 2, pp. 805–817, 2023, doi: 10.33395/sinkron.v8i2.12259.

A. Wahyudi, S. Ovelia Tampubolon, N. afrilia Putri, A. Ghassa, E. Rasywir, and D. Kisbianty, “Penerapan Data Mining Algoritma Naive Bayes Clasifier Untuk Mengetahui Minat Beli Pelanggan Terhadap INDIHOME,” J. Inform. Dan Rekayasa Komputer(JAKAKOM), vol. 2, no. 2, pp. 240–247, 2022, doi: 10.33998/jakakom.2022.2.2.111.

M. N. Zarti, E. Sahputra, A. Sonita, and Y. Apridiansyah, “Application Of Data Mining Using The Naïve Bayes Classification Method To Predict Public Interest Participation In The 2024 Elections,” J. Komputer, Inf. dan Teknol., vol. 3, no. 1, pp. 105–114, 2023, doi: 10.53697/jkomitek.v3i1.1192.

D. Diana Dewi, N. Qisthi, S. S. S. Lestari, and Z. H. S. Putri, “Perbandingan Metode Neural Network Dan Support Vector Machine Dalam Klasifikasi Diagnosa Penyakit Diabetes,” Cerdika J. Ilm. Indones., vol. 3, no. 09, pp. 828–839, 2023, doi: 10.59141/cerdika.v3i09.662.

E. Suherman, D. Hindarto, A. Makmur, and H. Santoso, “Comparison of Convolutional Neural Network and Artificial Neural Network for Rice Detection,” Sinkron, vol. 8, no. 1, pp. 247–255, 2023, doi: 10.33395/sinkron.v8i1.11944.

R. F. Nasution, M. H. Dar, and F. A. Nasution, “Implementation of the Naïve Bayes Method to Determine Student Interest in Gaming Laptops,” Sinkron, vol. 8, no. 3, pp. 1709–1723, 2023, doi: 10.33395/sinkron.v8i3.12562.

M. E. Apriyani, R. A. Maskuri, M. H. Ratsanjani, A. N. Pramudhita, and R. Rawansyah, “Digital Forensic Investigates Sexual Harassment on Telegram using Naïve Bayes,” Sinkron, vol. 8, no. 3, pp. 1409–1417, 2023, doi: 10.33395/sinkron.v8i3.12514.

J. P. Tanjung, F. C. Tampubolon, A. W. Panggabean, and M. A. A. Nandrawan, “Customer Classification Using Naive Bayes Classifier With Genetic Algorithm Feature Selection,” Sinkron, vol. 8, no. 1, pp. 584–589, 2023, doi: 10.33395/sinkron.v8i1.12182.

A. Saleh, N. Dharshinni, D. Perangin-Angin, F. Azmi, and M. I. Sarif, “Implementation of Recommendation Systems in Determining Learning Strategies Using the Naïve Bayes Classifier Algorithm,” Sinkron, vol. 8, no. 1, pp. 256–267, 2023, doi: 10.33395/sinkron.v8i1.11954.

R. Rahman and F. Fauzi Abdulloh, “Performance of Various Naïve Bayes Using GridSearch Approach In Phishing Email Dataset,” Sinkron, vol. 8, no. 4, pp. 2336–2344, 2023, doi: 10.33395/sinkron.v8i4.12958.

H. Silaban, S. Putri, and N. Evta, “Analysis Indonesia ’ s Export Value Forecasting to G20 Countries Using Long Short-Term Memory Neural Network Method,” SinkrOn, vol. 8, no. 3, pp. 2008–2017, 2023.

V. Lestari, H. Mawengkang, and Z. Situmorang, “Artificial Neural Network Backpropagation Method to Predict Tuberculosis Cases,” SinkrOn, vol. 8, no. 1, pp. 35–47, 2023, doi: 10.33395/sinkron.v8i1.11998.

S. Willian, T. H. Rochadiani, and T. Sofian, “Design of Batak Toba Script Recognition System Using Convolutional Neural Network Algorithm,” Sinkron, vol. 8, no. 3, pp. 1609–1618, 2023, doi: 10.33395/sinkron.v8i3.12617.

B. Anwar, N. Jalinus, and R. Abdullah, “Weather Forecast In Medan City With Hopfield Artificial Neural Network Algorithm,” Sinkron, vol. 8, no. 1, pp. 398–404, 2023, doi: 10.33395/sinkron.v8i1.12048.

A. B. P. B. Wedha, B. Rahman, D. Hindarto, and B. Y. Wedha, “Drowsy Detection in the Eye Area using the Convolutional Neural Network,” SinkrOn, vol. 8, no. 2, pp. 1097–1107, 2023, doi: 10.33395/sinkron.v8i2.12386.

A. Alam, D. A. F. Alana, and C. Juliane, “Comparison Of The C.45 And Naive Bayes Algorithms To Predict Diabetes,” Sinkron, vol. 8, no. 4, pp. 2641–2650, 2023, doi: 10.33395/sinkron.v8i4.12998.

F. F. Hasibuan, M. H. Dar, and G. J. Yanris, “Implementation of the Naïve Bayes Method to determine the Level of Consumer Satisfaction,” SinkrOn, vol. 8, no. 2, pp. 1000–1011, 2023, doi: 10.33395/sinkron.v8i2.12349.

H. A. Pratama, G. J. Yanris, M. Nirmala, and S. Hasibuan, “Implementation of Data Mining for Data Classification of Visitor Satisfaction Levels,” SinkrOn, vol. 8, no. 3, pp. 1832–1851, 2023.

P. Violita, G. J. Yanris, and M. N. S. Hasibuan, “Analysis of Visitor Satisfaction Levels Using the K-Nearest Neighbor Method,” SinkrOn, vol. 8, no. 2, pp. 898–914, 2023, doi: 10.33395/sinkron.v8i2.12257.

S. Maizura, V. Sihombing, and M. H. Dar, “Analysis of the Decision Tree Method for Determining Interest in Prospective Student College,” SinkrOn, vol. 8, no. 2, pp. 956–979, 2023, doi: 10.33395/sinkron.v8i2.12258.

D. J. Triani, M. H. Dar, and G. J. Yanris, “Analysis of Public Purchase Interest in Yamaha Motorcycles Using the K-Nearest Neighbor Method,” Sinkron, vol. 8, no. 3, pp. 1238–1254, 2023, doi: 10.33395/sinkron.v8i3.12433.

A. Mawaddah, M. H. Dar, and G. J. Yanris, “Analysis of the SVM Method to Determine the Level of Online Shopping Satisfaction in the Community,” SinkrOn, vol. 8, no. 2, pp. 838–855, 2023, doi: 10.33395/sinkron.v8i2.12261.

S. A. Hasibuan, V. Sihombing, and F. A. Nasution, “Analysis of Community Satisfaction Levels using the Neural Network Method in Data Mining,” Sinkron, vol. 8, no. 3, pp. 1724–1735, 2023, doi: 10.33395/sinkron.v8i3.12634.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Perbandingan Naïve Bayes dan Neural Network dalam Klasifikasi Minat Masyarakat pada Kursus Komputer

Dimensions Badge
Article History
Submitted: 2025-02-15
Published: 2025-03-07
Abstract View: 17 times
PDF Download: 6 times
How to Cite
Fitria, N., Suryadi, S., & Nasution, F. (2025). Analisis Perbandingan Naïve Bayes dan Neural Network dalam Klasifikasi Minat Masyarakat pada Kursus Komputer. Building of Informatics, Technology and Science (BITS), 6(4), 2512-2524. https://doi.org/10.47065/bits.v6i4.6999
Issue
Section
Articles