Clusterisasi Tingkat Pengangguran Terbuka Menurut Provinsi di Indonesia Menggunakan Algoritma K-Medoids


  • Abdul Karim Universitas Labuhanbatu, Rantauprapat, Indonesia
  • Shinta Esabella * Mail Universitas Teknologi Sumbawa, Sumbawa, Indonesia
  • Kusmanto Kusmanto Universitas Alwashliyah Labuhanbatu, Rantauprapat, Indonesia
  • Sudi Suryadi Universitas Labuhanbatu, Rantauprapat, Indonesia
  • Erwin Mardinata Universitas Teknologi Sumbawa, Sumbawa, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Clustering; K-Medoids Algorithm; TPT

Abstract

The Open Unemployment Rate (OER) in Indonesia decreased in February 2024 to 4.82%, showing an improvement compared to February 2023. Despite the decline in TPT, there are still regions with TPT reaching 7.02%, which could potentially lead to negative consequences such as increased crime. Efforts to address TPT include increasing economic growth, developing the quality of education and training. This research utilises clustering in data mining. The number of clusters formed was 3 clusters with a DBI value of -1.685. This study uses K-Medoids clustering to group 38 provinces based on TPT. Of the 38 data, there is incomplete data so preprocessing is done using the "filter example" operator in rapidminer to eliminate incomplete data so that there are 34 data that will be used in this study (after preprocessing). The results show 4 provinces with the highest TPT (Riau Islands, DKI Jakarta, West Java, and Banten) with a percentage of 11.76%.

Downloads

Download data is not yet available.

References

F. A. Ulya, A. N. Abdullah, T. A. Hanan, and I. M. Nur, “Pengelompokkan Tingkat Pengangguran Terbuka Di Jawa Tengah Menggunakan Metode K–Means Clustering: Grouping Open Unemployment Rates in Central Java Using the K–Means Clustering Method,” J. Data Insights, vol. 1, no. 2, pp. 71–80, 2023.

N. Mirantika, T. S. Syamfithriani, and R. Trisudarmo, “Implementasi Algoritma K-Medoids Clustering Untuk Menentukan Segmentasi Pelanggan,” NUANSA Inform., vol. 17, no. 1, pp. 196–204, 2023.

E. Sarastuti, D. Mahdiana, and N. Kusumawardhany, “Klasterisasi Tindak Kriminalitas di Provinsi Jawa Barat dengan Menggunakan Algoritma K-Medoids,” Bit (Fakultas Teknol. Inf. Univ. Budi Luhur), vol. 21, no. 1, pp. 84–91, 2024.

R. H. Sukarna and Y. Ansori, “Implementasi Data Mining Menggunakan Metode Naive Bayes Dengan Feature Selection Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,” J. Ilm. Sains dan Teknol., vol. 6, no. 1, pp. 50–61, 2022, doi: 10.47080/saintek.v6i1.1467.

F. O. Lusiana, I. Fatma, and A. P. Windarto, “Estimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Simalungun,” J. Informatics Manag. Inf. Technol., vol. 1, no. 2, pp. 79–84, 2021.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021.

A. Z. Siregar, “Implementasi Metode Regresi Linier Berganda Dalam Estimasi Tingkat Pendaftaran Mahasiswa Baru,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 2, no. 3, pp. 133–137, 2021.

S. S. S, A. T. Purba, V. Marudut, M. Siregar, T. Komputer, and P. B. Indonesia, “SISTEM PENDUKUNG KEPUTUSAN KELAYAKAN PEMBERIAN PINJAMAN,” vol. 3, pp. 25–30, 2020, doi: 10.37600/tekinkom.v3i1.131.

A. Karim, S. Esabella, K. Kusmanto, M. Hidayatullah, and S. Suryadi, “Penerapan Data Mining Untuk Pengelompokan Terhadap Kualitas Kinerja Karyawan Dengan Menggunakan Algoritma K-Medoids Clustering,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 1001, 2024, doi: 10.30865/mib.v8i2.7445.

M. M. Effendi, “Menentukan Prediksi Kelulusan Siswa Dengan Membandingkan Algoritma C4. 5 Dan Naive Bayes Studi Kasus SMKN. 1 Cikarang Selatan,” J. SIGMA, vol. 11, no. 3, pp. 143–148, 2020.

S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

S. U. Putri, E. Irawan, and F. Rizky, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4. 5,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 2, no. 1, pp. 39–46, 2021.

B. Bangun and A. K. Karim, “Pengembalian Data Yang Hilang Pada Dataset Dengan Menggunakan Algoritma K-Nearest Neighbor Imputation Data Mining,” J. Media Inform. Budidarma, vol. 8, no. 3, p. 1706, 2024, doi: 10.30865/mib.v8i3.8014.

F. Harahap, “Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita,” TIN Terap. Inform. Nusant., vol. 2, no. 4, pp. 191–197, 2021.

M. A. Rofiq, A. Qoiriah, S. Kom, and M. Kom, “Pengelompokan Kategori Buku Berdasarkan Judul Menggunakan Algoritma Agglomerative Hierarchical Clustering Dan K-Medoids,” J. Informatics Comput. Sci., vol. 2, no. 03, pp. 220–227, 2021.

B. Harli Trimulya Suandi As and L. Zahrotun, “PENERAPAN DATA MINING DALAM MENGELOMPOKKAN DATA RIWAYAT AKADEMIK SEBELUM KULIAH DAN DATA KELULUSAN MAHASISWA MENGGUNAKAN METODE AGGLOMERATIVE HIERARCHICAL CLUSTERING (Implementation Of Data Mining In Grouping Academic History Data Before Students And Stud,” J. Teknol. Informasi, Komput. dan Apl., vol. 3, no. 1, pp. 62–71, 2021.

M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 219–225, 2021.

I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 2, pp. 421–432, 2019.

H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, pp. 133–144, 2021.

K. Erwansyah, B. Andika, and R. Gunawan, “Implementasi Data Mining Menggunakan Asosiasi Dengan Algoritma Apriori Untuk Mendapatkan Pola Rekomendasi Belanja Produk Pada Toko Avis Mobile,” J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 4, no. 1, pp. 148–161, 2021.

A. S. L. T. T. H. Hafizah, “Data Mining Estimasi Biaya Produksi Ikan Kembung Rebus Dengan Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), no. Vol 1, No 6 (2022): EDISI NOVEMBER 2022, pp. 888–897, 2022.

Y. L. Nainel, E. Buulolo, and I. Lubis, “Penerapan Data Mining Untuk Estimasi Penjualan Obat Berdasarkan Pengaruh Brand Image Dengan Algoritma Expectation Maximization (Studi Kasus: PT. Pyridam Farma Tbk),” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 2, p. 214, 2020, doi: 10.30865/jurikom.v7i2.2097.

A. Supriyadi, A. Triayudi, and I. D. Sholihati, “Perbandingan algoritma k-means dengan k-medoids pada pengelompokan armada kendaraan truk berdasarkan produktivitas,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 229–240, 2021.

B. Produktivitas, “Perbandingan algoritma k-means dengan k-medoids pada pengelompokan armada kendaraan truk berdasarkan produktivitas,” vol. 06, pp. 229–240, 2021.

D. Wahyuli, I. Parlina, A. P. Windarto, and D. Suhendro, “Mengelompokkan Garis Kemiskinan Menurut Provinsi Menggunakan Algoritma K-Medoids,” no. September, pp. 452–461, 2019.

S. R. Ningsih, I. S. Damanik, A. P. Windarto, and H. Satria, “Analisis K-Medoids Dalam Pengelompokkan Penduduk Buta Huruf Menurut Provinsi,” no. September, pp. 721–730, 2019.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Clusterisasi Tingkat Pengangguran Terbuka Menurut Provinsi di Indonesia Menggunakan Algoritma K-Medoids

Dimensions Badge
Article History
Submitted: 2024-11-05
Published: 2024-12-03
Abstract View: 74 times
PDF Download: 85 times
How to Cite
Karim, A., Esabella, S., Kusmanto, K., Suryadi, S., & Mardinata, E. (2024). Clusterisasi Tingkat Pengangguran Terbuka Menurut Provinsi di Indonesia Menggunakan Algoritma K-Medoids. Building of Informatics, Technology and Science (BITS), 6(3), 1341-1351. https://doi.org/10.47065/bits.v6i3.6198
Issue
Section
Articles