Perbandingan Algoritma K-Nearest Neighbor dan Support Vector Machine Pada Pengenalan Pola Tanda Tangan Digital


  • Yuli Yadin * Mail Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • Dyah Ayu Megawaty Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • (*) Corresponding Author
Keywords: Digital Signature; KNN; SVM; GLCM; Classification

Abstract

In the fast-paced digital era, identity security has become crucial, and digital signatures play an important role in verification and authentication. This study focuses on the analysis and comparison of the performance of the K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) algorithms in digital signature pattern recognition. Both algorithms are widely used in classification tasks, and this study aims to identify which algorithm is most effective in recognizing and classifying digital signatures with the highest accuracy. Digital signature data was collected from various sources, including public datasets and directly collected data. Key features were extracted using the Gray-Level Co-occurrence Matrix (GLCM) method, which is effective in describing the texture and pattern of the signature. These features were used to train the KNN and SVM classification models. The performance of both algorithms was evaluated based on accuracy, precision, and recall metrics. The results showed that KNN with a value of k = 3 achieved an accuracy of 91.42%, while SVM with a linear kernel excelled with an accuracy of 97.06%. In addition, SVM is also more stable in handling complex signatures and has higher precision and recall than KNN, at 97.52% and 97.06%, respectively. On the other hand, KNN is faster in the training process and has a simpler implementation. This study provides valuable insights into the selection of optimal classification algorithms for digital signature recognition applications. The results of this study can be a guide for security and authentication system developers in choosing the most effective method to protect identity and prevent signature forgery.

Downloads

Download data is not yet available.

References

M. D. R. Priyanto, E. Setiawan, and H. Fitriyah, “Sistem Biometrik Gerakan Tanda Tangan Menggunakan Sensor MPU6050 dengan Metode Backpropagation,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 8, pp. 2338–2348, Aug. 2020, Accessed: May 03, 2025. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7623

E. Wahyuni, S. Rahman, and A. Risma, “Keabsahan Digital Signature/Tanda tangan Elektronik Dinjau Dalam Perspektif Hukum Perdata dan UU ITE,” Journal of Lex Generalis (JLG), vol. 3, no. 5, pp. 1082–1098, May 2022, Accessed: May 03, 2025. [Online]. Available: https://mail.pasca-umi.ac.id/index.php/jlg/article/view/886

R. Tolosana, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia, “DeepSign: Deep On-Line Signature Verification,” IEEE Trans Biom Behav Identity Sci, vol. 3, no. 2, pp. 229–239, Apr. 2021, doi: 10.1109/TBIOM.2021.3054533.

L. Amaludin and A. Rahmatulloh, “Penerapan ECDSA dan BLAKE2B Untuk Membentuk Tanda Tangan Digital Sebagai Autentikasi Dokumen,” Jurnal Informatika dan Multimedia, vol. 16, no. 2, pp. 20–26, Dec. 2024, doi: 10.33795/JTIM.V16I2.6599.

S. Jain, M. Khanna, and A. Singh, “Comparison among different CNN Architectures for Signature Forgery Detection using Siamese Neural Network,” Proceedings - IEEE 2021 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2021, pp. 481–486, Feb. 2021, doi: 10.1109/ICCCIS51004.2021.9397114.

H. F. Lumentut, M. S. Borman, and N. Handayati, “Kekuatan Pembuktian Dokumen Elektronik Dengan Tanda Tangan Elektronik Di Dalam Hukum Acara Perdata,” Jurnal Penelitian Ilmiah Multidisiplin, vol. 8, no. 10, pp. 2118–7451, Oct. 2024, Accessed: May 14, 2025. [Online]. Available: https://oaj.jurnalhst.com/index.php/jpim/article/view/5159

R. Jannah, M. Walid, and H. Hoiriyah, “Sistem Pengenalan Citra Dokumen Tanda Tangan Menggunakan Metode CNN (Convolutional Neural Network),” Energy : Jurnal Ilmiah Ilmu-ilmu Teknik, vol. 12, no. 2, pp. 54–61, Dec. 2022, doi: 10.51747/ENERGY.V12I2.1116.

A. C. Vidyanti, I. Riati, and A. Ramadhanu, “Identification of Signature Authenticity Using Binary Extraction and K-nearest Neighbor Feature Methods,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 13, no. 2, pp. 274–279, Jun. 2024, doi: 10.32736/SISFOKOM.V13I2.2063.

K. A. Safitri and R. Wulanningrum, “Aplikasi Pengenalan Pola Tulisan Tangan Menggunakan Metode Support Vector Machine,” Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), vol. 4, no. 1, pp. 201–206, Dec. 2020, doi: 10.29407/INOTEK.V4I1.197.

C. R. (Chyntia) Widiawati and S. (Suliswaningsih) Suliswaningsih, “Analisa Hasil Perbandingan Poly Kernel dan Normalisasi Poly Kernel pada Support Vector Machine sebagai Metode Klasifikasi Citra Tanda Tangan,” Jurnal Khatulistiwa Informatika, vol. 9, no. 1, pp. 71–77, Apr. 2022, doi: 10.31294/INF.V9I1.11288.

M. Kurniawan, N. Saidatin, D. H. Nugroho, I. T. Adhi, and T. Surabaya, “Implementasi Shape Feature dan K-Nearest Neighbor untuk Klasifikasi Tanda Tangan,” Prosiding Seminar Nasional Sains dan Teknologi Terapan, vol. 1, no. 1, pp. 155–162, Sep. 2020, Accessed: May 24, 2025. [Online]. Available: https://ejurnal.itats.ac.id/sntekpan/article/view/1230

R. Pujianto et al., “Pengolahan Citra Dan Metode Support Vector Machine (SVM) Dalam Pengenalan Pola Tanda Tangan,” Jurnal Rekayasa Komputasi Terapan, vol. 1, no. 01, pp. 2776–5873, Mar. 2021, doi: 10.30998/JRKT.V1I01.4048.

M. Septiani, “Pengenalan Pola Batik Lampung Menggunakan Metode Principal Component Analysis,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 2, no. 4, pp. 552–558, Feb. 2021, doi: 10.33365/JATIKA.V2I4.1612.

A. Q. Maharani and T. Ardiansah, “Kombinasi Metode Multi-Attribute Utility Theory dan Pivot Pairwise Relative Criteria Importance Assessment Dalam Penentuan Lulusan Terbaik,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 4, p. 2074, Oct. 2023, doi: 10.30865/MIB.V7I4.6884.

G. D. Angel and R. Wulanningrum, “Machine Learning untuk Identifikasi Tanda Tangan Menggunakan GLCM dan Euclidean Distance,” Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), vol. 4, no. 1, pp. 297–301, Dec. 2020, doi: 10.29407/INOTEK.V4I1.213.

W. K. Oktalao, I. M. B. Atmaja Darmawan, I. W. Santiyasa, I. P. G. Hendra Suputra, and I. G. N. Anom Cahyadi Putra, “Klasifikasi Motif Kain Tradisional Cepuk Menggunakan GLCM dan KNN,” JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), vol. 11, no. 3, p. 545, Jul. 2022, doi: 10.24843/JLK.2023.V11.I03.P10.

L. Hakim, S. P. Kristanto, D. Yusuf, and F. N. Afia, “Pengenalan Motif Batik Banyuwangi Berdasarkan Fitur Grey Level Co-Occurrence Matrix,” Jurnal Teknoinfo, vol. 16, no. 1, p. 1, Jan. 2022, doi: 10.33365/JTI.V16I1.1320.

N. Widiastuti, A. Hermawan, and D. Avianto, “Komparasi Algoritma Klasifikasi Datamining Untuk Prediksi Minat Pencari Kerja,” Jurnal Teknoinfo, vol. 17, no. 1, pp. 219–227, Jan. 2023, doi: 10.25126/JTIIK.202073080.

E. Fitriani, “Perbandingan Algoritma C4.5 Dan Naïve Bayes Untuk Menentukan Kelayakan Penerima Bantuan Program Keluarga Harapan,” SISTEMASI, vol. 9, no. 1, p. 103, Jan. 2020, doi: 10.32520/STMSI.V9I1.596.

A. H. Yunial, “Analisis Optimasi Algoritma Klasifikasi Support Vector Machine, Decision Trees, dan Neural Network Menggunakan Adaboost dan Bagging,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 3, pp. 247–260, Sep. 2020, doi: 10.32493/INFORMATIKA.V5I3.6609.

Y. M. Y. MZ, R. M. Fadilla, and I. Pratama, “Implementasi Metode K-Nearst Neighbor Berbasis Euclidean Distance Untuk Klasifikasi Penerimaan Vaksin Covid-19,” Informasi Interaktif, vol. 6, no. 3, pp. 111–117, Sep. 2021, Accessed: May 24, 2025. [Online]. Available: https://e-journal.janabadra.ac.id/index.php/informasiinteraktif/article/view/1426

A. R. D. Nugraha, K. Auliasari, and Y. A. Pranoto, “Implementasi Metode K-Nearest Neighbor (Knn) Untuk Seleksi Calon Karyawan Baru (Studi Kasus : BFI Finance Surabaya),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 4, no. 2, pp. 14–20, Oct. 2020, doi: 10.36040/JATI.V4I2.2656.

A. Purnamawati, M. N. Winnarto, and M. Mailasari, “Analisis Cart (Classification And Regression Trees) Untuk Prediksi Pengguna Sepeda Berdasarkan Cuaca,” Jurnal Teknoinfo, vol. 16, no. 1, pp. 14–19, Jan. 2022, doi: 10.33365/JTI.V16I1.1478.

A. (Atang) Saepudin, R. (Riska) Aryanti, E. (Eka) Fitriani, and D. (Dahlia) Dahlia, “Optimasi Algoritma SVM dan K-NN Berbasis Particle Swarm Optimization pada Analisis Sentimen Fenomena Tagar #2019GantiPresiden,” Jurnal Khatulistiwa Informatika, vol. 6, no. 1, pp. 95–102, Jan. 2020, doi: 10.31294/JTK.V6I1.6828.

A. Liani, U. Enri, and Y. Umaidah, “Analisis Perbandingan Kernel Algoritma Support Vector Machine dalam Mengklasifikasikan Skripsi Teknik Informatika berdasarkan Abstrak,” JOINS (Journal of Information System), vol. 5, no. 2, pp. 240–249, Nov. 2020, doi: 10.33633/JOINS.V5I2.3715.

D. Arisandi, T. Sutrisno, and I. Kurniawan, “Klasifikasi Opini Masyarakat Di Twitter Tentang Kebocoran Data Yang Terjadi Di Indonesia Menggunakan Algoritma Svm,” Jurnal Teknika, vol. 15, no. 2, pp. 75–80, Sep. 2023, doi: 10.30736/JT.V15I2.993.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Algoritma K-Nearest Neighbor dan Support Vector Machine Pada Pengenalan Pola Tanda Tangan Digital

Dimensions Badge
Article History
Submitted: 2025-02-13
Published: 2025-03-28
Abstract View: 126 times
PDF Download: 39 times
How to Cite
Yadin, Y., & Megawaty, D. (2025). Perbandingan Algoritma K-Nearest Neighbor dan Support Vector Machine Pada Pengenalan Pola Tanda Tangan Digital. Building of Informatics, Technology and Science (BITS), 6(4), 2785-2794. https://doi.org/10.47065/bits.v6i4.6982
Issue
Section
Articles