Komparasi Performa Klasifikasi Sentimen Masyarakat Terhadap Kurikulum Merdeka di Sekolah Menggunakan SVM dan KNN
Abstract
The Independent Curriculum is a strategic education policy that aims to increase learning flexibility and develop student competencies in the 21st century. This research focuses on analyzing public sentiment towards the implementation of the Independent Curriculum using two machine learning algorithms, namely Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). One of the main challenges in this study is the imbalance of sentiment data that includes negative, neutral, and positive classes. To overcome this, the Synthetic Minority Oversampling Technique (SMOTE) technique was applied to balance the distribution of data between classes. The results show that the SVM method is superior to KNN with an overall accuracy of 92% and a high F1-score in the majority class (Neutral: 96%), although the performance in the minority class (Negative: 43% and Positive: 40%) still needs improvement. In contrast, the KNN method recorded a lower overall accuracy of 31% but had a more even distribution of errors. After the implementation of SMOTE, there was a significant improvement in both methods, especially in recognizing minority classes. This study concludes that SVM is more effective for sentiment classification tasks on datasets with class imbalances, and recommends further exploration of ensemble methods to improve the quality of prediction and model generalization.
Downloads
References
K. Mahabatillah, “Analisis Pengembangan Kurikulum Merdeka dan Implementasinya,” Golden Age: Jurnal Pendidikan Anak Usia Dini, vol. 8, no. 1, pp. 195–201, 2024, doi: 10.29313/ga.
L. Wanti and I. Chastanti, “Analysis of preparation in the independent curriculum implementation: Case study on IPAS learning,” BIO-INOVED : Jurnal Biologi-Inovasi Pendidikan, vol. 5, no. 2, p. 250, 2023, doi: 10.20527/bino.v5i2.15493.
W. Darmawan, E. Jumiati, and R. Sulistiyaningsih, “Komparasi Metode Klasifikasi Untuk Analisis Sentimen Pengguna Twitter Terhadap Penerapan Kurikulum Merdeka,” IC-Tech, vol. 18, no. 1, pp. 9–15, 2023, doi: 10.47775/ictech.v18i1.262.
W. Darmawan, M. Kurniawan Faizal, W. Setianto, and W. Hapsoro, “Analisis Sentimen Penerapan Kurikulum Merdeka Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor Dengan Forward Selection,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 12, no. 1, 2023, doi: 10.30591/smartcomp.v12i1.4634.
V. Krotov, L. Johnson, and L. Silva, “Tutorial: Legality and ethics of web scraping,” Communications of the Association for Information Systems, vol. 47, no. 1, pp. 539–563, 2020, doi: 10.17705/1CAIS.04724.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.
M. Nanda Fahriza and N. Riza, “Analisis Sentimen Pada Ulasan Aplikasi Chat Generative Pre-Trained Transformer Gpt Menggunakan Metode Klasifikasi K-Nearest Neighbor(Knn),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 2, pp. 1351–1358, 2023, doi: 10.36040/jati.v7i2.6767.
A. Baita, Y. Pristyanto, and N. Cahyono, “Analisis Sentimen Mengenai Vaksin Sinovac Menggunakan Algoritma Support Vector Machine (Svm) Dan K-Nearest Neighbor (Knn),” Infos, vol. 4, no. 2, pp. 42–42, 2021. https://doi.org/10.24076/infosjournal.2021v4i2.687
A. Budianto, R. Ariyuana, and D. Maryono, “Perbandingan K-Nearest Neighbor (Knn) Dan Support Vector Machine (Svm) Dalam Pengenalan Karakter Plat Kendaraan Bermotor,” Jurnal Ilmiah Pendidikan Teknik dan Kejuruan, vol. 11, no. 1, p. 27, 2019, doi: 10.20961/jiptek.v11i1.18018.
T. M. Permata Aulia, N. Arifin, and R. Mayasari, “Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,” SINTECH (Science and Information Technology) Journal, vol. 4, no. 2, pp. 139–145, 2021, doi: 10.31598/sintechjournal.v4i2.762.
D. Sartika, “Implementasi Algoritma K-Nearest Neighbour dalam Menganalisis Sentimen Terhadap Program Merdeka Belajar Kampus Merdeka (MBKM),” Jurnal Buana Informatika, vol. 14, no. 01, pp. 69–76, 2023, doi: 10.24002/jbi.v14i01.7178.
A. R. Isnain, J. Supriyanto, and M. P. Kharisma, “Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 2, p. 121, 2021, doi: 10.22146/ijccs.65176.
T. A. Dewi and E. Mailoa, “Perbandingan Implementasi Metode Smote Pada Algoritma Support Vector Machine (Svm) Dalam Analisis Sentimen Opini Masyarakat Tentang Mixue,” Jurnal Indonesia : Manajemen Informatika dan Komunikasi, vol. 4, no. 3, pp. 849–855, 2023, doi: 10.35870/jimik.v4i3.289.
E. Hokijuliandy, H. Napitupulu, and F. Firdaniza, “Analisis Sentimen Menggunakan Metode Klasifikasi Support Vector Machine (SVM) dan Seleksi Fitur Chi-Square,” SisInfo : Jurnal Sistem Informasi dan Informatika, vol. 5, no. 2, pp. 40–49, 2023, doi: 10.37278/sisinfo.v5i2.670.
A. W. Sari, T. I. Hermanto, and M. Defriani, “Sentiment Analysis Of Tourist Reviews Using K-Nearest Neighbors Algorithm And Support Vector Machine,” Sinkron, vol. 8, no. 3, pp. 1366–1378, 2023, doi: 10.33395/sinkron.v8i3.12447.
S. Ernawati and R. Wati, “Evaluasi Performa Kernel SVM dalam Analisis Sentimen Review Aplikasi ChatGPT Menggunakan Hyperparameter dan VADER Lexicon,” Jurnal Buana Informatika, vol. 15, no. 01, pp. 40–49, 2024, doi: 10.24002/jbi.v15i1.7925.
D. Muhidin and A. Wibowo, “Perbandingan Kinerja Algoritma Support Vector Machine dan K-Nearest Neighbor Terhadap Analisis Sentimen Kebijakan New Normal,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 5, no. 2, p. 153, 2020, doi: 10.30998/string.v5i2.6715.
P. H. Prastyo, A. S. Sumi, A. W. Dian, and A. E. Permanasari, “Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel,” Journal of Information Systems Engineering and Business Intelligence, vol. 6, no. 2, p. 112, 2020, doi: 10.20473/jisebi.6.2.112-122.
A. D. Adhi Putra, “Sentiment Analysis on User Reviews of the Bibit and Bareksa Application with the KNN Algorithm,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 2, pp. 636–646, 2021.
K. Pramayasa, I. M. D. Maysanjaya, and I. G. A. A. D. Indradewi, “Analisis Sentimen Program Mbkm Pada Media Sosial Twitter Menggunakan KNN Dan SMOTE,” SINTECH (Science and Information Technology) Journal, vol. 6, no. 2, pp. 89–98, 2023, doi: 10.31598/sintechjournal.v6i2.1372.
M. H. Asnawi, I. Firmansyah, R. Novian, and R. S. Pontoh, “Perbandingan algoritma naïve bayes, k-nn, dan svm dalam pengklasifikasian sentimen media sosial,” Prosiding Seminar Nasional Statistika, vol. 10, no. June 2023, pp. 20–20, 2021, doi: 10.1234/pns.v10i.85.
N. Widya Utami and M. Artana, “Text Mining Dalam Analisis Sentimen Pembelajaran Daring Di Masa Pandemi Covid 19 Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Informatika Teknologi dan Sains, vol. 4, no. 2, pp. 140–148, 2022, doi: 10.51401/jinteks.v4i2.2034.
E. Novianto, A. Hermawan, and D. Avianto, “Perbandingan Metode K-Nearest Neighbor dan Support Vector Machine Untuk Memprediksi Penerima Beasiswa Keringanan UKT,” Jurnal Media Informatika Budidarma, vol. 8, no. 1, p. 654, 2024, doi: 10.30865/mib.v8i1.6913.
E. Suryati, Styawati, and A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Dan Sistem Informasi, vol. 4, no. 1, pp. 96–106, 2023, [Online]. Available: https://doi.org/10.33365/jtsi.v4i1.2445
E. R. Lidinillah, T. Rohana, and A. R. Juwita, “Analisis sentimen twitter terhadap steam menggunakan algoritma logistic regression dan support vector machine,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 154–164, 2023, doi: 10.37373/tekno.v10i2.440.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Komparasi Performa Klasifikasi Sentimen Masyarakat Terhadap Kurikulum Merdeka di Sekolah Menggunakan SVM dan KNN
Pages: 2795-2806
Copyright (c) 2025 Risa Fitria Apriyani, Dyah Ayu Megawaty

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).