Segmentasi Pelanggan Kartu Kredit Menggunakan Metode Klustering: Analisis dan Profiling


  • Agus Arifudin * Mail Universitas Dian Nuswantoro, Semarang, Indonesia
  • Fikri Budiman Universitas Dian Nuswantoro, Semarang, Indonesia
  • (*) Corresponding Author
Keywords: Segmentation; Credit Card; K-Means; DBSCAN; Hierachical Clustering

Abstract

The use of credit cards in Indonesia has increased significantly, creating complex challenges for financial institutions in understanding user behavior and meeting their needs. This growth poses a higher risk of fraud, customer dissatisfaction due to unmet expectations, and financial instability for both consumers and banks. These issues highlight the urgency of conducting research to segment customers based on their usage behavior. The analyzed dataset includes information from 8,950 credit card users, covering transaction frequency, account balance, and transaction types. This study aims to segment customers using K-Means, DBSCAN, and Hierarchical Clustering algorithms. K-Means groups customers with similar behavioral patterns, DBSCAN identifies irregular clusters and outliers, while Hierarchical Clustering provides insights into relationships between clusters. The analysis results reveal four main segments, each with unique characteristics. For instance, the active user segment exhibits high transaction frequency and large balances, whereas new users demonstrate lower transaction frequency. These findings offer valuable insights for financial institutions to enhance their services and product offerings. By understanding the characteristics of each segment, financial institutions can tailor their marketing strategies and products to improve customer satisfaction and loyalty

Downloads

Download data is not yet available.

References

I. M. Karo Karo, “Segmentation of Credit Card Customers Based on Their Credit Card Usage Behavior using The K-Means Algorithm,” J. Softw. Eng. Inf. Commun. Technol., vol. 2, no. 2, pp. 55–64, 2022, doi: 10.17509/seict.v2i2.40220.

C. A. Robb, “Financial Knowledge and Credit Card Behavior of College Students,” J. Fam. Econ. Issues, vol. 32, no. 4, pp. 690–698, 2011, doi: 10.1007/s10834-011-9259-y.

A. Fathurrozi and T. Ginanjar Laksana, “Enhancing Promotional Strategy Mapping Using the K-Means Clustering Algorithm to Raise Sales,” is Best Account. Inf. Syst. Inf. Technol. Bus. Enterp. this is link OJS us, vol. 8, no. 2, pp. 121–135, 2024, doi: 10.34010/aisthebest.v8i2.11597.

Y. Wicaksono, “Segmentasi Pelanggan Bisnis Dengan Multi Kriteria Menggunakan K-Means,” Indones. J. Bus. Intell., vol. 1, no. 2, p. 45, 2019, doi: 10.21927/ijubi.v1i2.872.

M. F. Fadhillah, A. Lovely, A. Suyoso, and I. Puspitasari, “Customer Segmentation with Clustering Algorithm Based on Recency , Frequency , and Monetary ( RFM ) Attributes Segmentasi Pelanggan dengan Algoritma Clustering Berdasarkan Atribut Recency , Frequency dan Monetary ( RFM ),” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 5, no. January, pp. 48–56, 2025.

A. S. P. Paramita, “Comparison of K-Means and DBSCAN Algorithms for Customer Segmentation in E-commerce,” J. Digit. Mark. Digit. Curr., vol. 1, no. 1, pp. 29–43, 2024, doi: 10.47738/jdmdc.v1i1.3.

A. Abdulhafedh, “Incorporating K-means, Hierarchical Clustering and PCA in Customer Segmentation,” J. City Dev., vol. 3, no. 1, pp. 12–30, 2021, doi: 10.12691/jcd-3-1-3.

H. Mukhtar, I. D. Pramaditya, W. S. Weisdiyanto, and S. H. Putra, “Algoritma K-Means Untuk Pengelompokan Perilaku Customer,” J. Softw. Eng. Inf. Syst., vol. 4, no. 2, pp. 96–101, 2024.

Baiq Nikum Yulisasih, H. Herman, and S. Sunardi, “K-Means Clustering Method For Customer Segmentation Based On Potential Purchases,” J. ELTIKOM, vol. 8, no. 1, pp. 83–90, 2024, doi: 10.31961/eltikom.v8i1.1137.

J. Chitra and J. Heikal, “Customer segmentation using the K-Means Clustering algorithm in Foreign Banks in Indonesia,” Indones. Account. Res. J., vol. 11, no. 4, pp. 230–241, 2024.

L. Abednego, C. E. Nugraheni, and A. Salsabina, “Customer Segmentation: Transformation from Data to Marketing Strategy,” Conf. Ser., vol. 4, no. 1, pp. 139–152, 2023, doi: 10.34306/conferenceseries.v4i1.645.

Y. Qiu and J. Wang, “A Machine Learning Approach to Credit Card Customer Segmentation for Economic Stability,” Proc. 4th Int. Conf. Econ. Manag. Big Data Appl. ICEMBDA 2023, Oct. 27–29, 2023, Tianjin, China, 2024, doi: 10.4108/eai.27-10-2023.2342007.

W. Rohalidyawati, R. Rahmawati, and M. Mustafid, “Segmentasi Pelanggan E-Money Dengan Menggunakan Algoritma Dbscan (Density Based Spatial Clustering Applications With Noise) Di Provinsi Dki Jakarta,” J. Gaussian, vol. 9, no. 2, pp. 162–169, 2020, doi: 10.14710/j.gauss.v9i2.27818.

F. M. Pranata, S. H. Wijoyo, and N. Y. Setiawan, “Analisis Performa Algoritma K-Means dan DBSCAN Dalam Segmentasi Pelanggan Dengan Pendekatan Model RFM,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 1, pp. 2548–964, 2017, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/13962

M. Sarkar, A. R. Puja, and F. R. Chowdhury, “Optimizing Marketing Strategies with RFM Method and K-Means Clustering-Based AI Customer Segmentation Analysis,” J. Bus. Manag. Stud., vol. 6, no. 2, pp. 54–60, 2024, doi: 10.32996/jbms.2024.6.2.5.

H. H. Zhao, X. C. Luo, R. Ma, and X. Lu, “An Extended Regularized K-Means Clustering Approach for High-Dimensional Customer Segmentation with Correlated Variables,” IEEE Access, vol. 9, pp. 48405–48412, 2021, doi: 10.1109/ACCESS.2021.3067499.

S. Lade, “CREDIT CARD-SEGMENTATION,” SSRN, 2024, doi: https://dx.doi.org/10.2139/ssrn.4939839.

M. A. Fitriani and D. C. Febrianto, “Data Mining for Potential Customer,” JUITA J. Inform., vol. 9, no. 1, pp. 25–32, 2021, doi: 10.30595/juita.v9i1.7983.

E. L. Cahapin, B. A. Malabag, C. S. Santiago, J. L. Reyes, G. S. Legaspi, and K. L. Adrales, “Clustering of students admission data using k-means, hierarchical, and DBSCAN algorithms,” Bull. Electr. Eng. Informatics, vol. 12, no. 6, pp. 3647–3656, 2023, doi: 10.11591/eei.v12i6.4849.

D. Hendarsyah, “Analisis Perilaku Konsumen Dan Keamanan Kartu Kredit Perbankan,” JPS (Jurnal Perbank. Syariah), vol. 1, no. 1, pp. 85–96, 2020, doi: 10.46367/jps.v1i1.204.

V. Mihova and V. Pavlov, “A customer segmentation approach in commercial banks,” AIP Conf. Proc., vol. 2025, no. 1, p. 30003, Oct. 2018, doi: 10.1063/1.5064881.

F. P. Rachman, H. Santoso, and A. Djajadi, “Machine Learning Mini Batch K-means and Business Intelligence Utilization for Credit Card Customer Segmentation,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 10, pp. 218–227, 2021, doi: 10.14569/IJACSA.2021.0121024.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Segmentasi Pelanggan Kartu Kredit Menggunakan Metode Klustering: Analisis dan Profiling

Dimensions Badge
Article History
Submitted: 2025-01-31
Published: 2025-03-07
Abstract View: 22 times
PDF Download: 11 times
How to Cite
Arifudin, A., & Budiman, F. (2025). Segmentasi Pelanggan Kartu Kredit Menggunakan Metode Klustering: Analisis dan Profiling. Building of Informatics, Technology and Science (BITS), 6(4), 2436-2447. https://doi.org/10.47065/bits.v6i4.6879
Issue
Section
Articles