Analisa Optimasi Grid Search pada Algoritma Random Forest dan Decision Tree untuk Klasifikasi Stunting


  • Ririt Sheila Tina Rahmayani * Mail Universitas Dian Nuswantoro, Semarang, Indonesia
  • Fikri Budiman Universitas Dian Nuswantoro, Semarang, Indonesia
  • (*) Corresponding Author
Keywords: Decision Trees; Grid Search; Optimization; Random Forest; Stunting

Abstract

Stunting is a serious problem that is of global concern because of its significant impact on the health and growth of children under five. This condition occurs due to long-term malnutrition. In Indonesia, nutritional problems are still common, including stunting which affects children's growth and development. In this regard, data mining has an important role in facing this challenge. Therefore, the aim of this research is to optimize stunting classification using Decision Tree and Random Forest algorithms optimized with Grid Search. This optimization was carried out to increase the accuracy of the two algorithms and identify algorithms that are superior in determining stunting. The dataset used consists of 10,000 toddler data with important attributes related to health conditions. The analysis results show that the initial Decision Tree model has an accuracy of 70.2%. After optimization using Grid Search, the accuracy of the Decision Tree model increased significantly to 82.8%. Meanwhile, the initial Random Forest model achieved an accuracy of 77.9%, and after optimization with Grid Search, its accuracy increased even higher compared to Decision Tree, namely 84.1%. This increase reflects the effectiveness of optimization in increasing the model's ability to classify stunting more accurately. This research provides important insights into the effectiveness of both algorithms in identifying stunting and emphasizes the importance of optimization to improve classification accuracy, which can support appropriate interventions for the well-being of future generations.

Downloads

Download data is not yet available.

References

A. Arwansyah, A. F. Lewa, M. Muliani, S. Warnasih, A. Z. Mustopa, and A. R. Arif, “Molecular Recognition of Moringa oleifera Active Compounds for Stunted Growth Prevention Using Network Pharmacology and Molecular Modeling Approach,” ACS Omega, vol. 8, no. 46, pp. 44121–44138, Nov. 2023, doi: 10.1021/acsomega.3c06379.

T. Mulyaningsih, I. Mohanty, V. Widyaningsih, T. A. Gebremedhin, R. Miranti, and V. H. Wiyono, “Beyond personal factors: Multilevel determinants of childhood stunting in Indonesia,” PLOS ONE, vol. 16, no. 11, p. e0260265, Nov. 2021, doi: 10.1371/journal.pone.0260265.

“PAUDPEDIA - Prevalensi Stunting Tahun 2022 di Angka 21,6%, Protein Hewani Terbukti Cegah Stunting.” Accessed: Oct. 06, 2024. [Online]. Available: https://paudpedia.kemdikbud.go.id/kabar-paud/berita/prevalensi-stunting-tahun-2022-di-angka-216-protein-hewani-terbukti-cegah-stunting?do=MTQyMy1iNmNmMmYzZA==&ix=MTEtYmJkNjQ3YzA=

M. Y. Titimeidara and W. Hadikurniawati, “IMPLEMENTASI METODE NAÏVE BAYES CLASSIFIER UNTUK KLASIFIKASI STATUS GIZI STUNTING PADA BALITA,” J. Ilm. Inform., vol. 9, no. 01, Art. no. 01, Jun. 2021, doi: 10.33884/jif.v9i01.3741.

F. Sulistyawati and N. P. Widarini, “Kejadian stunting masa pandemi covid-19,” Med Respati J Ilm Kesehat, vol. 17, no. 1, p. 37, 2022.

B. Buenita, P. B. Chandra, and L. K. K. Z. Zendrato, “FAKTOR DETERMINAN KEJADIAN STUNTING PADA BALITA DI UPTD PUSKESMAS KECAMATAN GUNUNGSITOLI ALO’OA,” J. Kesehat. Tambusai, vol. 4, no. 3, pp. 3806–3818, Sep. 2023, doi: 10.31004/jkt.v4i3.18500.

“World Health Statistics.” Accessed: Oct. 06, 2024. [Online]. Available: https://www.who.int/data/gho/publications/world-health-statistics

D. S. P. M.Kes S. K. M., Strategi Pencegahan Stunting Pada Usia Baduta (Bawah Dua Tahun). Deepublish, 2023.

I. P. Putri, T. Terttiaavini, and N. Arminarahmah, “Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak: Comparative Analysis of Machine Learning Algorithms for Predicting Child Stunting,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, Art. no. 1, Jan. 2024, doi: 10.57152/malcom.v4i1.1078.

C. Serón-Arbeloa et al., “Malnutrition Screening and Assessment,” Nutrients, vol. 14, no. 12, p. 2392, Jun. 2022, doi: 10.3390/nu14122392.

I. W. M.Kom S. Si, B. N. M.Kom S. Si, and M. M.Si S. Si, Data Mining Menggunakan Android, Weka, dan SPSS. Airlangga University Press, 2020.

M. A. Hossain, R. Ferdousi, S. A. Hossain, M. F. Alhamid, and A. E. Saddik, “A Novel Framework for Recommending Data Mining Algorithm in Dynamic IoT Environment,” IEEE Access, vol. 8, pp. 157333–157345, 2020, doi: 10.1109/ACCESS.2020.3019480.

R. F. Putra et al., DATA MINING : Algoritma dan Penerapannya. PT. Sonpedia Publishing Indonesia, 2023.

L. Qadrini, H. Hikmah, and M. Megasari, “Oversampling, Undersampling, Smote SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017,” J. Comput. Syst. Inform. JoSYC, vol. 3, no. 4, Art. no. 4, Sep. 2022, doi: 10.47065/josyc.v3i4.2154.

J. Rusman, B. Z. Haryati, and A. Michael, “Optimisasi Hiperparameter Tuning pada Metode Support Vector Machine untuk Klasifikasi Tingkat Kematangan Buah Kopi,” J-Icon J. Komput. Dan Inform., vol. 11, no. 2, Art. no. 2, Oct. 2023, doi: 10.35508/jicon.v11i2.12571.

T. Hidayat et al., “Performance Prediction Using Cross Validation (GridSearchCV) for Stunting Prevalence,” in 2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), Feb. 2024, pp. 1–6. doi: 10.1109/AIMS61812.2024.10512657.

P. Handayani, A. C. Fauzan, and H. Harliana, “Machine Learning Klasifikasi Status Gizi Balita Menggunakan Algoritma Random Forest,” KLIK Kaji. Ilm. Inform. Dan Komput., vol. 4, no. 6, Art. no. 6, Jun. 2024, doi: 10.30865/klik.v4i6.1909.

Y. Wiratama and R. A. Aziz, “Perbandingan Prediksi Penyakit Stunting Balita Menggunakan Algoritma Support Vektor Machine dan Random Forest,” Build. Inform. Technol. Sci. BITS, vol. 6, no. 2, Art. no. 2, Sep. 2024, doi: 10.47065/bits.v6i2.5543.

M. Utomo and R. Prathivi, “Perbandingan Algoritma Support Vector Machine dan Decision Tree untuk Klasifikasi Performa Perusahaan,” Build. Inform. Technol. Sci. BITS, vol. 6, no. 1, Art. no. 1, Jun. 2024, doi: 10.47065/bits.v6i1.5278.

H. Kurniawan and A. Rahim, “Implementasi Algoritma Gaussian Naïve Bayes Dalam Klasifikasi Status Gizi Pada Balita,” Build. Inform. Technol. Sci. BITS, vol. 6, no. 2, pp. 627–634, 2024.

S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 1, Art. no. 1, Jan. 2022, doi: 10.30865/mib.v6i1.3312.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisa Optimasi Grid Search pada Algoritma Random Forest dan Decision Tree untuk Klasifikasi Stunting

Dimensions Badge
Article History
Submitted: 2024-10-24
Published: 2024-12-03
Abstract View: 62 times
PDF Download: 42 times
How to Cite
Rahmayani, R. S., & Budiman, F. (2024). Analisa Optimasi Grid Search pada Algoritma Random Forest dan Decision Tree untuk Klasifikasi Stunting. Building of Informatics, Technology and Science (BITS), 6(3), 1537−1546. https://doi.org/10.47065/bits.v6i3.6128
Issue
Section
Articles