Perbandingan Algoritma NBC, SVM dan Random Forest untuk Analisis Sentimen Implementasi Starlink pada Media Sosial X


  • Lintang Kencono Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • Dedi Darwis * Mail Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • (*) Corresponding Author
Keywords: Machine Learning; Social Media; Public Sentiment; SMOTE; Starlink

Abstract

Internet development in Indonesia continues to progress rapidly, but equitable access remains a challenge, especially in remote areas. Starlink, a satellite internet service from SpaceX, comes as a solution to reduce this gap by providing fast and stable connectivity. This research analyzes public sentiment towards the implementation of Starlink on social media platform X through a comparative approach using three Machine Learning algorithms: Naive Bayes Classifier, Support Vector Machine, and Random Forest. The research data consisted of 6,780 Indonesian tweets collected during the period September 1 to November 30, 2024 using the harvest tweet library with the keywords “starlink,” “internet starlink,” and “SpaceX starlink”. After preprocessing, a total of 5,382 tweets were used, consisting of 4,348 tweets with negative sentiment and 884 tweets with positive sentiment. To overcome data imbalance, Synthetic Minority Over-sampling Technique (SMOTE) was applied. Before the application of SMOTE, the Random Forest model showed the highest accuracy of 92%, followed by Support Vector Machine with 91%, and Naive Bayes Classifier with 85%. After SMOTE was applied, the accuracy of the three models increased significantly, with Random Forest reaching 99%, Support Vector Machine 98%, and Naive Bayes Classifier 91%. Random Forest also showed the best performance in detecting positive sentiment, with Precision and Recall values reaching 100%. This research provides an in-depth insight into the effectiveness of Machine Learning algorithms in analyzing public sentiment towards Starlink services on social media and shows that the application of SMOTE can improve the model's performance in classifying sentiment more evenly.

Downloads

Download data is not yet available.

References

M. R. Julianto, Y. Akbar, and T. Wahyudi, “Analisis Sentimen Respon Publik Terhadap Program Internet Gratis di Platform X Melalui Pendekatan Algoritma Naïve Bayes,” Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, vol. 5, no. 3, pp. 2940–2950, 2024. doi.org/10.35870/jimik.v5i3.981.

Lisnawati, “Kehadiran Starlink di Indonesia : Manfaat dan Dampak,” Info Singkat : Kajian Singkat Tehadap isu Aktual dan Strategies, vol. 16, no. 11, pp. 16–20, 2024.

M. Ridwan et al., “Oligopoli Telekomunikasi dan Inovasi : Analisis Dampak Masuknya STARLINK bagi Industri Telekomunikasi di Indonesia,” Jurnal Ilmiah Ekonomi Dan Manajemen, vol. 2, no. 12, pp. 306–312, 2024. doi.org/10.61722/jiem.v2i12.3206.

A. Nugroho and N. T. Kurniadi, “Sentiment Analysis of Starlink on Twitter Using Support Vector Machine Algorithm,” Journal of Computer Networks , Architecture and High Performance Computing, vol. 6, no. 3, pp. 1321–1332, 2024. doi.org/10.47709/cnahpc.v6i3.4348

M. Y. Khaliq, M. Rakib, and V. Aris, “Sentiment Analysis to Starlink Services in Indonesia,” International Journal of Latest Technology in Engineering & Management, vol. 9, no. 6, pp. 13–21, 2024. doi: 10.56581/ijltem.9.6.02-12.

C. Candra, K. W. Chandra, and H. Irsyad, “Efektifitas SMOTE dalam Mengatasi Imbalanced Class Algoritma K-Nearest Neighbors pada Analisis Sentimen terhadap Starlink,” Jurnal Ilmu Komputer dan Informatika, vol. 4, no. 1, pp. 31–42, 2024, doi: 10.54082/jiki.132.

B. Paula, M. Fawzan, and H. Irsyad, “Analisis Sentiment Masyarakat Terhadap penyebaran Starlink di Indonesia Menggunakan Algoritma Naive Bayes,” Journal Information & Computer, vol. 02, no. 2, pp. 141–148, 2024. doi.org/10.32493/jicomisc.v2i2.43077.

M. Khalil Gibran, Rifki, M. I., Hasugian, A. H., Siahaan, A. T. A. A., Afandi Sahputra, & Ong, R, “Sentiment Analysis of Platform X Users on Starlink Using Naive Bayes,” Instal : Jurnal Komputer, vaol 16, no. 03, 210–220, 2024, doi.org/10.54209/jurnalinstall.v16i03.240

M. Nur Akbar, N. A. S. Yusuf, N. Nasrullah, and M. Mubarak, “Analisis Sentimen Pengguna Indihome dengan Metode Klasifikasi Support Vector Machine (SVM),” Journal Software, Hardware and Information Technology, vol. 2, no. 1, pp. 13–21, 2022, doi: 10.24252/shift.v2i1.18.

Lady Agustine Fitrana, S. Linawati, N. Herlinawati, R. Sa’adah, and S. Seimahuria, “Analisis Sentimen Pengguna Twitter Terhadap Brand Indosat Menggunakan Metode Naïve Bayes Classifier,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 4291–4297, 2024, doi: 10.36040/jati.v8i3.9866.

F. J. Fauzan, M Afdal, Rice Novita, and Mustakim, “Penerapan Machine Learning Pada Analisis Sentimen Aplikasi Mytelkomsel Mengunakan Data Ulasan Google Playstore,” Indonesian Journal of Computer Science, vol. 13, no. 3, pp. 4747–4761, 2024, doi: 10.33022/ijcs.v13i3.4024.

H. Handayani, “Analisis Sentimen Pengguna X Terhadap Layanan Provider Iconnet Menggunakan Nai¨Ve Bayes Dan Support Vector Machine,” Artificial Intelligence and Mechatronics Systems (AIMS), vol. 12, no. 112, pp. 33–38, 2024, doi:10.1109/aims61812.2024.10512562

P. D. Aprilia and S. Lestari, “Analisa Sentimen Drama Korea Melalui Media Sosial X dengan Menggunakan Algoritma Naïve Bayes,” Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, vol. 5, no. 3, pp. 3248–3261, 2024. doi.org/10.35870/jimik.v5i3.997.

P. Cahyani and L. Abdillah, “Perbandingan Performa Algoritma Naïve Bayes , SVM dan Random Forest : Studi Kasus Analisis Sentimen Pengguna Sosial Media X,” Kalbiscientia Jurnal Sains Dan Teknologi, vol. 11, no. 02, pp. 12–21, 2024. doi.org/10.53008/kalbiscientia.v11i02.3624.

A. Rhamadanti, A. Rifa’i, F. Dikananda, and K. Anam, “Analisis Sentimen Pada Ulasan Access By Kereta Api Indonesia Dengan K-Nearest Neighbor,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 1, 2024, doi: 10.23960/jitet.v12i1.3961.

P. Wahyuningtias, H. Warih Utami, U. Ahda Raihan, H. Nur Hanifah, and Y. Nicholas Adanson, “Comparison of Random Forest and Support Vector Machine Methods on Twitter Sentiment Analysis (Case Study: Internet Selebgram Rachel Vennya Escape From Quarantine),” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 1, pp. 141–145, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.1.168

T. Ridwansyah, “Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 5, pp. 178–185, 2022, doi: 10.30865/klik.v2i5.362.

L. Rofiqi and M. Akbar, “Analisis Sentimen Terkait RUU Perampasan Aset dengan Support Vector Machine,” JEKIN - Jurnal Teknik Informatika, vol. 4, no. 3, pp. 529–538, 2024, doi: 10.58794/jekin.v4i3.824.

D. N. Herisnan and M. Elwinda, “Analisis sentimen terhadap resesi ekonomi global di indonesia menggunakan hybrid linear regression,” INTECOMS: Journal of Information Technology and Computer Science, vol. 7, pp. 1495–1501, 2024., Doi:10.31539/Intecoms.V7i5.11889.

D. Toresa, S. Rico Francsisco Sitorus, I. Muzdalifah, F. Wiza, and R. Syelly, “Analisis Sentimen Terhadap Ulasan Penggunaan Dompet Digital Dana Mengunakan Metode Klasifikasi Support Vector Machine,” Jurnal Technologica, vol. 3, no. 2, pp. 64–74, 2024, doi: 10.55043/technologica.v3i2.163.

R. Nurlaely, S. D. Sartika, Kamdan, and I. L. Kharisma, “Analisis Sentimen Twitter Terhadap Cyberbullying Menggunakan Metode Support Vector Machine (SVM),” Jurnal Computer Science and Information Technology(CoSciTech), vol. 4, no. 2, pp. 376–384, 2023, doi.org/10.37859/coscitech.v4i2.5161

M. H. Wicaksono, M. D. Purbolaksono, and S. Al Faraby, “Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily,” eProceedings of Engineering, vol. 10, no. 3, pp. 3591–3600, 2023.

A. Saepudin, A. Faqih, and G. Dwilestari, “Perbandingan Algoritma Klasifikasi Support Vector Machine, Random Forest dan Logistic Regression Pada Ulasan Shopee,” Jurnal Tekno Kompak, vol. 18, no. 1, p. 178, 2024, doi: 10.33365/jtk.v18i1.3764.

A. Baita, Y. Pristyanto, and N. Cahyono, “Analisis Sentimen Mengenai Vaksin Sinovac Menggunakan Algoritma Support Vector Machine (Svm) Dan K-Nearest Neighbor (Knn),” Information System Journal, vol. 4, no. 2, pp. 42–42, 2021. doi.org/10.24076/infosjournal.2021v4i2.687.

H. Azizah, B. S. Rintyarna, and T. A. Cahyanto, “Sentimen Analisis Untuk Mengukur Kepercayaan Masyarakat Terhadap Pengadaan Vaksin Covid-19 Berbasis Bernoulli Naive Bayes,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 3, no. 1, pp. 23–29, 2022, doi: 10.37148/bios.v3i1.36.

S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 153–160, 2023, doi: 10.57152/malcom.v3i2.897.

L. Annisa, A. D. Kalifia, F. Bisnis, D. Humaniora, and U. T. Yogyakarta, “Analisis Teknik TF-IDF Dalam Identifikasi Faktor-Faktor Penyebab Depresi Pada Individu,” Gudang Jurnal Multidisiplin Ilmu, vol. 2, pp. 302–307, 2024. https://doi.org/10.59435/gjmi.v2i1.249.

I. Widaningrum, D. Mustikasari, R. Arifin, S. L. Tsaqila, and D. Fatmawati, “Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) dan K-Means Clustering Untuk Menentukan Kategori Dokumen,” Prosiding Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK), pp. 145–149, 2022. [Online]. Available: https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/349

R. A. Raharjo, I. M. G. Sunarya, and D. G. H. Divayana, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Kasus Analisis Sentimen Terhadap Data Vaksin Covid-19 Di Twitter,” Elkom : Jurnal Elektronika dan Komputer, vol. 15, no. 2, pp. 456–464, 2022, doi: 10.51903/elkom.v15i2.918.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

R. Afandi, M. Afdal, and R. Novita, “Analisis Sentimen Masyarakat Terhadap Pinjaman Online di Twitter Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest N eighbor,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 2, pp. 596–605, 2024, doi: 10.47065/bits.v6i2.5300.

Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 176–184, 2023, doi: 10.37373/tekno.v10i2.419.

A. Ramadhani, I. Permana, M. Afdal, and M. Fronita, “Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo – Gibran Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, pp. 1509–1516, 2024, doi: 10.47065/bits.v6i3.6188.

I. Afdhal, R. Kurniawan, I. Iskandar, “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 1, pp. 122–130, 2022, [Online]. Available: http://ojs.serambimekkah.ac.id/jnkti/article/view/4004/pdf

F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 9, pp. 4305–4313, 2022. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/11562

E. Suryati, Styawati, and A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Dan Sistem Informasi, vol. 4, no. 1, pp. 96–106, 2023, [Online]. Available: https://doi.org/10.33365/jtsi.v4i1.2445


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Algoritma NBC, SVM dan Random Forest untuk Analisis Sentimen Implementasi Starlink pada Media Sosial X

Dimensions Badge
Article History
Submitted: 2025-01-22
Published: 2025-03-01
Abstract View: 41 times
PDF Download: 17 times
How to Cite
Kencono, L., & Darwis, D. (2025). Perbandingan Algoritma NBC, SVM dan Random Forest untuk Analisis Sentimen Implementasi Starlink pada Media Sosial X. Building of Informatics, Technology and Science (BITS), 6(4), 2288-2300. https://doi.org/10.47065/bits.v6i4.6813
Issue
Section
Articles