Analisis Klasifikasi Sentimen Prediksi Rating Aplikasi Apple’s AppStore Dengan Menggunakan Metode Algoritma Random Forest


  • Armyka Pratama Harahap * Mail Universitas Labuhanbatu, Rantauprapat, Indonesia
  • Abdul Karim Universitas Labuhanbatu, Rantauprapat, Indonesia
  • Rohani Rohani Universitas Labuhanbatu, Rantauprapat, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment Analysis; Apple's App Store Application; Google Play Store; Random Forest Method

Abstract

Users of Apple's App Store applications are increasingly widespread among smartphone users. However, user responses to these apps vary widely. In addition, continuous developments in adding features and editing capabilities have led to the increasing complexity of using these applications. This research aims to analyze the sentiment of application users on Apple's App Store through reviews on the Google Play Store using the Random Forest method. This method was chosen to efficiently identify and group user responses into positive and negative categories. The dataset used in this study includes 5000 reviews, reflecting the diversity of opinions from actively participating users. The data preprocessing stage involves cleaning, case folding, tokenization, stopword removal, and lemmatization to ensure good data quality before sentiment analysis is carried out. Next, word weighting is carried out using the TF-IDF method to assign weight values to words that influence user sentiment. The research results show that the Random Forest method provides a high level of accuracy in analyzing user sentiment for Apple's App Store applications, with an accuracy of 86%, precision of 89%, recall of 81%, and f1-score of 85%. This research provides further understanding regarding user responses to Apple's App Store applications, and confirms the success of the Random Forest method in handling sentiment analysis on user review datasets on the Google Play Store.

Downloads

Download data is not yet available.

References

N. M. Hutabarat, “Penggunaan Aplikasi Edit Video dalam Materi Seni Musik pada Pembelajaran Secara Daring,” Quaerite Veritatem: Jurnal Pendidikan, vol. 1, no. 2, pp. 81–90, 2022.

E. Dewi, S. Mulyani, A. Hidayatuloh Taopik, and T. Agustiawan, “Analisis Sentimen Ulasan Produk Pada Top Brand Produk Masker Di Tokopedia Menggunakan Naive Bayes,” J. Eksplora Inform., vol. 1, no. 1, pp. 32–42, 2020.

A. Purnamawati, M. N. Winarto, and M. Mailasari, “Analisis Sentimen Aplikasi TikTok menggunakan Metode BM25 dan Improved K-NN Fitur Chi-Square,” J. Komtika (Komputasi dan Inform., vol. 7, no. 1, pp. 97–105, 2023, doi: 10.31603/komtika.v7i1.8938.

Y. S. Triyantono, S. Al Faraby, and M. Dwifebri, “Analisis Sentimen Terhadap Ulasan Film Menggunakan Word2Vec dan SVM,” eProceedings Eng., vol. 8, no. 4, p. 4136, 2021.

P. Wahyuningtias, H. Warih Utami, U. Ahda Raihan, H. Nur Hanifah, and Y. Nicholas Adanson, “Comparison of Random Forest and Support Vector Machine Methods on Twitter Sentiment Analysis (Case Study: Internet Selebgram Rachel Vennya Escape From Quarantine),” J. Tek. Inform., vol. 3, no. 1, pp. 141–145, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.1.168

J. Effendi and M. J. Ramadhan, “Analisa Cluster Aplikasi pada Google Play Store dengan Menggunakan Metode K-Means,” Pros. Annu. Res. Semin. 2018, vol. 4, no. 1, pp. 103–106, 2018, [Online]. Available: http://seminar.ilkom.unsri.ac.id/index.php/ars/article/view/1982

T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 4, pp. 3436–3442, 2022, doi: 10.35957/jatisi.v9i4.3586.

A. Adiwijaya, “Analisis Sentimen Terhadap Ulasan Film Menggunakan Algoritma Random Forest,” e-Proceeding of Engineering, vol. 8, no. 5, p. 101, 2021

S. W. Hadi, M. F. Julianto, S. Rahmatullah, and W. Gata, “Analisa Cluster Aplikasi Pada App Store Dengan Menggunakan Metode K-Means,” Bianglala Inform., vol. 8, no. 2, pp. 86–90, 2020, doi: 10.31294/bi.v8i2.8191.

M. Raffi, “Analisis Sentimen Ulasan Aplikasi Binar Pada Google Play Store Menggunakan Algoritma Naive Bayes,” J. Inf. Technol. Comput. Sci, vol. 6, no. 1, pp. 238–462, 2023, [Online]. Available: https://media.neliti.com/media/publications/283828-metode-naive-bayes-untuk-prediksi-kelulu-139fcfea.pdf

M. D. and E. Riksakomara, “’Prediksi Intensitas Hujan Kota Surabaya dengan Matlab menggunakan Teknik Random Forest dan CART (Studi Kasus Kota Surabaya),” J. Teh. ITS, vol. 6, no. 1, doi: 10.21608/pshj.2022.250026.

F. A. Yahya, “Problem Manajemen Pesantren, Sekolah, Madrasah: Problem Mutu Dan Kualitas,” Australas. J. Educ. Technol., vol. 29, no. 1, pp. 96–110, 2018.

A. Nuraini, A. Faqih, G. Dwilestari, N. Dienwati Nuris, and R. Narasati, “Analisis Sentimen Terhadap Review Aplikasi Brimo Di Google Play Store Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3661–3666, 2024, doi: 10.36040/jati.v7i6.8228.

B. Bayu Baskoro et al., “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR),” J. Informatics Inf. Syst. Softw. Eng. Appl. (INISTA), , vol. Volume 3 N, no. 2, pp. 21–029, 2021, doi: 10.20895/INISTA.V3.

F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 9, pp. 4305–4313, 2022.

"Mobile App Store ( 7200 apps)" Accessed: 05-Dec-2021, Available: https://www.kaggle.com/ramamet4/app-store-apple-data-set-10k-apps

W. Apriliah, I. Kurniawan, M. Baydhowi, and T. Haryati, “Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” Sistemasi, vol. 10, no. 1, p. 163, 2021, doi: 10.32520/stmsi.v10i1.1129.

I. Afdhal, R. Kurniawan, I. Iskandar, R. Salambue, E. Budianita, and F. Syafria, “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 1, pp. 122–130, 2022, [Online]. Available: http://ojs.serambimekkah.ac.id/jnkti/article/view/4004/pdf

E. Fitri, “Sentiment Analysis of the Ruangguru Application Using Naive Bayes, Random Forest and Support Vector Machine Algorithms,” J. Transform., vol. 18, no. 1, p. 71, 2020.

M. Barak, “Learning Science Via Animated Movies: Its effect on students’ thinking and motivation. Computer & Education,” CogITo Smart J., vol. 4, no. 1, pp. 37–45, 2020.

M. G. Andrés, M. A.A., & Casas, “Gaming in Higher Education: Students’Assesment on Game-Based Learning. Proceedings of the 45th Conference of the International Simulation and Gaming Association,” Matematika, vol. 3, no. 1, pp. 33–43, 2023, doi: 10.17509/cd.v9i2.11339.

R. S. Oktavian and S. Budi, “Analisis Dataset Google Playstore Menggunakan Metode Exploratory Data Analysis,” J. Strateg., vol. 2, no. 2, pp. 636–649, 2020.

O.- Pahlevi, A.- Amrin, and Y.- Handrianto, “Implementasi Algoritma Klasifikasi Random Forest Untuk Penilaian Kelayakan Kredit,” J. Infortech, vol. 5, no. 1, pp. 71–76, 2023, doi: 10.31294/infortech.v5i1.15829.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Klasifikasi Sentimen Prediksi Rating Aplikasi Apple’s AppStore Dengan Menggunakan Metode Algoritma Random Forest

Dimensions Badge
Article History
Submitted: 2025-01-22
Published: 2025-03-01
Abstract View: 44 times
PDF Download: 21 times
How to Cite
Harahap, A., Karim, A., & Rohani, R. (2025). Analisis Klasifikasi Sentimen Prediksi Rating Aplikasi Apple’s AppStore Dengan Menggunakan Metode Algoritma Random Forest. Building of Informatics, Technology and Science (BITS), 6(4), 2371-2379. https://doi.org/10.47065/bits.v6i4.6812
Issue
Section
Articles