Penerapan Metode GA-CBU Pada Algoritma Logistic Regression Untuk Mengatasi Class Imbalance Data Beasiswa KIP-Kuliah
Abstract
The issue of class imbalance often poses a challenge in data analysis, where the number of instances in the majority class is significantly higher than that in the minority class. This can lead classification models to be biased towards predicting the majority class, resulting in low accuracy in identifying the minority class. This research aims to implement the Logistic Regression (LR) algorithm combined with the Clustering Based Undersampling (CBU) method as an undersampling technique, feature selection, and optimization using Genetic Algorithm (GA) in classifying KIP-College scholarship data at Muhammadiyah University of East Kalimantan. In addition, this research also evaluates the performance of the model with 10-Fold Cross Validation and Confusion Matrix techniques as accuracy metrics and aims to overcome the problem of class imbalance in the data of scholarship recipients (KIP) at Muhammadiyah University of East Kalimantan. The data used consists of 1075 records with 37 features related to the socio-economic factors of scholarship recipients. The results from the application of the CBU method indicate an increase in the accuracy of the Logistic Regression model from 62.51% to 67.68%. Furthermore, the combination of GA and CBU has providing more stable results in classifying minority classes. It is hoped that this research can make a significant contribution to the development of a more accurate and efficient scholarship recipient selection system, as well as serve as a reference for future studies in the fields of data mining and machine learning.
Downloads
References
N. Indriyani, A. Fauzi, and A. B. H. Y. Yanto, “Pemodelan Prediksi Penerima Beasiswa Kip-Kuliah Menggunakan Metode Weight Product,” IMTechno J. Ind. Manag. Technol., vol. 5, no. 1, 2024, doi: 10.31294/imtechno.v5i1.2958.
A. S. Suweleh, D. Susilowati, and Hairani, “Aplikasi Penentuan Penerima Beasiswa Menggunakan Algoritma C4.5,” J. BITe, vol. 2, no. 1, pp. 12–21, 2020, doi: 10.30812/bite.v2i1.798.
P. Dewi, R. Nur Aulia, and R. Taufiqillah, “Customer Churn Prediction for Life Insurance Using Binary Logistic Regression,” Econ. Rev. J., vol. 3, no. 3, pp. 2289–2299, 2024, doi: 10.56709/mrj.v3i3.353.
D. Megah Sari, N. Arifin, Nurfitrianingsih, and A. M. Yusuf, “Implementation of Decision Support System for Scholarship Recipients at Bank Indonesia,” Ceddi J. Educ., vol. 1, no. 1, pp. 13–22, 2022, doi: 10.56134/cje.v1i1.10.
J. Prasetya, “Penerapan Klasifikasi Naive Bayes dengan Algoritma Random Oversampling dan Random Undersampling pada Data Tidak Seimbang Cervical Cancer Risk Factors,” Leibniz J. Mat., vol. 2, no. 2, pp. 11–22, 2022, doi: 10.59632/leibniz.v2i2.173.
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, no. February, pp. 321–357, 2020, doi: 10.1613/jair.953.
M. Kim and K. B. Hwang, “An empirical evaluation of sampling methods for the classification of imbalanced data,” PLoS One, vol. 17, no. 7 July, pp. 1–22, 2022, doi: 10.1371/journal.pone.0271260.
M. Khairy, T. M. Mahmoud, and T. Abd-El-Hafeez, “The effect of rebalancing techniques on the classification performance in cyberbullying datasets,” Neural Comput. Appl., vol. 36, no. 3, pp. 1049–1065, 2024, doi: 10.1007/s00521-023-09084-w.
S. Katoch, S. S. Chauhan, and V. Kumar, A review on genetic algorithm: past, present, and future, vol. 80, no. 5. Multimedia Tools and Applications, 2021. doi: 10.1007/s11042-020-10139-6.
N. Cahyani, S. S. Pangastuti, K. Fithriasari, I. Irhamah, and N. Iriawan, “Classification of Bidikmisi Scholarship Acceptance using Neural Network Based on Hybrid Method of Genetic Algorithm,” Indones. J. Stat. Its Appl., vol. 5, no. 2, pp. 396–404, 2021, doi: 10.29244/ijsa.v5i2p396-404.
C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data,” Front. Energy Res., vol. 9, no. March, pp. 1–17, 2021, doi: 10.3389/fenrg.2021.652801.
Y. D. Evitasari, W. J. Pranoto, and N. A. Verdikha, “Evaluasi Support Vector Machine Dengan Optimasi Metode Genetic Algorithm Pada Klasifikasi Banjir Kota Samarinda,” J. Sains Komput. dan Teknol. Inf., vol. 6, no. 1, pp. 49–53, 2023, doi: 10.33084/jsakti.v6i1.5462.
R. Ariani, “Data Curation Dan Research Data Management Untuk Terwujudnya Integrasi Data Riset Di Indonesia,” J. Doc. Inf. Sci., vol. 4, no. 1, pp. 93–103, 2020, doi: 10.33505/jodis.v4i1.162.
F. Sulianta, Basic Data Mining from A to Z. Feri Sulianta, 2023. [Online]. Available: https://books.google.co.id/books?id=JcLhEAAAQBAJ
I. R. Pratama, M. Maimunah, and E. R. Arumi, “Sistem Klasifikasi Penjualan Produk Alat Listrik Terlaris Untuk Optimasi Pengadaan Stok Menggunakan Naïve Bayes,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2135, 2022, doi: 10.30865/mib.v6i4.4418.
I. M. Hamdani1 et al., “INTISARI Jurnal Inovasi Pengabdian Masyarakat Edukasi dan Pelatihan Data Science dan Data Preprocessing,” Juni, vol. 2, no. 1, pp. 19–26, 2024, doi: 10.58227/intisari.v2i1.125.
D. Ariyadi, T. Azhima, and Y. Siswa, “Penerapan Metode PSO-SMOTE Pada Algoritma Random Forest Untuk Mengatasi Class Imbalance Data Bencana Tanah Longsor,” vol. 6, no. 1, pp. 320–329, 2025.
A. Kochkarev, A. Khvostikov, D. Korshunov, A. Krylov, and M. Boguslavskiy, “Data balancing method for training segmentation neural networks,” CEUR Workshop Proc., vol. 2744, pp. 1–9, 2020, doi: 10.51130/graphicon-2020-2-4-19.
M. Fajar and Rudiman, “Klasifikasi Jenis Tanah Wakaf Muhammadiyah di Tanjung Redeb dengan Metode K-Means Berbasis Sig,” Borneo Student Res., vol. 3, no. 2, p. 2022, 2022, [Online]. Available: https://muhammadsyaf.wordpress.com/2017/03/04/sistem-informasi-geografis-dan-
J. V. Alegre-Requena, S. Sowndarya S. V., R. Pérez-Soto, T. M. Alturaifi, and R. S. Paton, “AQME: Automated quantum mechanical environments for researchers and educators,” Wiley Interdiscip. Rev. Comput. Mol. Sci., vol. 13, no. 5, pp. 1–18, 2023, doi: 10.1002/wcms.1663.
J. Zhang, L. Chen, and F. Abid, “Prediction of Breast Cancer from Imbalance Respect Using Cluster-Based Undersampling Method,” J. Healthc. Eng., vol. 2019, 2020, doi: 10.1155/2019/7294582.
T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining,” Inf., vol. 14, no. 1, 2023, doi: 10.3390/info14010054.
Budhi Gustiandi, Langkah Awal Menguasai Bahasa Pemrograman Python. 2023. doi: 10.55981/brin.656.
F. H. Harahap, “IJM : Indonesian Journal of Multidisciplinary Klasifikasi Menggunakan Model Regresi Logistik Multinomial dan Regresi Logistik Multinomial Komponen Utama,” vol. 1, pp. 632–642, 2023.
P. Schober and T. R. Vetter, “Statistical Minute,” Int. Anesth. Res. Soc., vol. 129, no. 2, p. 2019, 2021.
B. P. Pratiwi, A. S. Handayani, and S. Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix,” J. Inform. Upgris, vol. 6, no. 2, pp. 66–75, 2021, doi: 10.26877/jiu.v6i2.6552.
R. Syaputra, T. A. Y. Siswa, and W. J. Pranoto, “Model Optimasi SVM Dengan PSO-GA dan SMOTE Dalam Menangani High Dimensional dan Imbalance Data Banjir,” Teknika, vol. 13, no. 2, pp. 273–282, 2024, doi: 10.34148/teknika.v13i2.876.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode GA-CBU Pada Algoritma Logistic Regression Untuk Mengatasi Class Imbalance Data Beasiswa KIP-Kuliah
Pages: 2322-2334
Copyright (c) 2025 Ahmad Nugraha Poernamawan, Taghfirul Yoga Azhima Siswa, Rudiman Rudiman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).