Penerapan Metode GA-TL Pada Algoritma Naive Bayes Untuk Mengatasi Class Imbalance Data Beasiswa KIP-Kuliah
Abstract
The Indonesia Smart Card (KIP) Scholarship Program aims to support students from underprivileged families in pursuing higher education, yet the distribution of recipient data often experiences class imbalance, leading to inaccuracies in scholarship allocation. This imbalance, characterized by disproportionate data between recipient and non-recipient groups, affects classification model performance, causing models to favor the majority class and overlook the minority class, potentially excluding eligible recipients. To address this issue, this study combines the Genetic Algorithm for feature selection and optimization with Tomek Links-Random Undersampling for data balancing. The research process includes data preprocessing, 10-fold cross-validation, and performance evaluation using a confusion matrix. Results indicate that without Tomek Links-Random Undersampling, Naïve Bayes accuracy increased from 65.2% to 66.0% after feature selection and optimization using the Genetic Algorithm, while applying Tomek Links-Random Undersampling improved accuracy from 56% to 63%. This method also enhanced fairness in recipient classification, promoting a more equitable distribution of benefits. The improved model accuracy significantly aids future scholarship selection processes, demonstrating that integrating efficient machine learning approaches optimizes the KIP Scholarship Program by ensuring beneficiaries are appropriately targeted based on predetermined criteria.
Downloads
References
W. D. Yuniarti, L. Z. Damayanti, and S. Nur’aini, “Sistem Pendukung Keputusan Penerima Bantuan Kartu Indonesia Pintar dengan Metode Weighted Product,” J. Transform., vol. 20, no. 2, p. 92, 2023, doi: 10.26623/transformatika.v20i2.5877.
P. Sam et al., “Implementasi Pendukung Keputusan Metode Saw Untuk Penerimaan Kip,” Dj djtechno, vol. 5, no. 2, pp. 391–401, 2024, doi: 10.46576/djtechno.
B. G. Dimmera and P. D. P. Purnasari, “Permasalahan Dan Solusi Program Indonesia Pintar Dalam Mewujudkan Pemerataan Pendidikan Di Kabupaten Bengkayang,” Sebatik, vol. 24, no. 2, pp. 307–314, 2020, doi: 10.46984/sebatik.v24i2.1137.
F. A. Nikmah, N. T. Wardani, and N. Matsani, “Apakah Kartu Indonesia Pintar Berhasil Menurunkan Angka Putus Sekolah?,” J. Komun. Pendidik., vol. 4, no. 2, p. 72, 2020, doi: 10.32585/jkp.v4i2.581.
D. A. Shafiq, M. Marjani, R. A. A. Habeeb, and D. Asirvatham, “Student Retention Using Educational Data Mining and Predictive Analytics: A Systematic Literature Review,” IEEE Access, vol. 10, no. June, pp. 72480–72503, 2022, doi: 10.1109/ACCESS.2022.3188767.
A. Karima and T. A. Y. Siswa, “Prediksi Kinerja Mahasiswa Dalam Perkuliahan Berbasis Learning Management System Menggunakan Algoritma Naïve Bayes,” Progresif J. Ilm. Komput., vol. 18, no. 2, p. 211, 2022, doi: 10.35889/progresif.v18i2.922.
D. B. Siswanto and D. Normawati, “Sistem Klasifikasi Monitoring dan Evaluasi Kelayakan Penerima Beasiswa UAD Menggunakan Algoritma Naïve Bayes,” J. Saintekom, vol. 13, no. 2, pp. 161–172, 2023, doi: 10.33020/saintekom.v13i2.428.
T. A. Zuraiyah, M. M. Mulyati, and G. H. F. Harahap, “Perbandingan Metode Naïve Bayes, Support Vector Machine Dan Recurrent Neural Network Pada Analisis Sentimen Ulasan Produk E-Commerce,” Multitek Indones., vol. 17, no. 1, pp. 27–43, 2023, doi: 10.24269/mtkind.v17i1.7092.
A. U. Kurnia, A. S. Budi, and P. H. Susilo, “Sistem Pendukung Keputusan Penerimaan Beasiswa Menggunakan Metode Naive Bayes,” Joutica, vol. 5, no. 2, p. 397, 2020, doi: 10.30736/jti.v5i2.484.
F. M. Febri and D. P. Sari, “Determination of Bank Indonesia Scholarship Recipients Using Naïve Bayes Classifier,” Barekeng J. Ilmu Mat. dan Terap., vol. 17, no. 3, pp. 1595–1604, 2023, doi: 10.30598/barekengvol17iss3pp1595-1604.
A. Wahid, F. Azim, and F. Firdausi, “Application of Data Mining to Classify Receiving Social Assistance Using the Naïve Bayes Method,” Insid. - J. Sist. Inform. Cerdas, vol. 1, no. 2, pp. 62–66, 2023, doi: 10.31967/inside.v1i2.881.
E. A. Alabdulqader et al., “Improving prediction of blood cancer using leukemia microarray gene data and Chi2 features with weighted convolutional neural network,” Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-65315-7.
A. S. Tarawneh, A. B. Hassanat, G. A. Altarawneh, and A. Almuhaimeed, “Stop Oversampling for Class Imbalance Learning: A Review,” IEEE Access, vol. 10, pp. 47643–47660, 2022, doi: 10.1109/Accecs.2022.3169512.
X. Liu, L. Guo, H. Wang, J. Guo, S. Yang, and L. Duan, “Research on imbalance machine learning methods for MR T1 WI soft tissue sarcoma data,” BMC Med. Imaging, vol. 22, no. 1, pp. 1–13, 2022, doi: 10.1186/s12880-022-00876-5.
H. Ardiansyah and M. B. S. Junianto, “Penerapan Algoritma Genetika untuk Penjadwalan Mata Pelajaran,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 329, 2022, doi: 10.30865/mib.v6i1.3418.
S. Katoch, S. S. Chauhan, and V. Kumar, “A Review on Genetic Algorithm: Past, Present, and Future,” Multimed. Tools Appl., vol. 80, 2021, doi: 10. 1007/s11042-020-10139-6.
Y. Religia and D. Maulana, “Genetic Algorithm Optimization on Nave Bayes for Airline Customer Satisfaction Classification,” JISA(Jurnal Inform. dan Sains), vol. 4, no. 2, pp. 121–126, 2021, doi: 10.31326/jisa.v4i2.925.
B. K. Khotimah, M. Miswanto, and H. Suprajitno, “Optimization of feature selection using genetic algorithm in naïve Bayes classification for incomplete data,” Int. J. Intell. Eng. Syst., vol. 13, no. 1, pp. 334–343, 2020, doi: 10.22266/ijies2020.0229.31.
I. S. Ramadhan and A. Salam, “Teknik Random Undersampling untuk Mengatasi Ketidakseimbangan Kelas pada CT Scan Kista Ginjal,” Techno.Com, vol. 23, no. 1, pp. 20–28, 2024, doi: 10.62411/tc.v23i1.9738.
H. Sulistiani, A. Syarif, K. Muludi, and Warsito, “Performance evaluation of feature selections on some ML approaches for diagnosing the narcissistic personality disorder,” Bull. Electr. Eng. Informatics, vol. 13, no. 2, pp. 1383–1391, 2024, doi: 10.11591/eei.v13i2.6717.
A. F. Watratan, A. P. B, D. and D. Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” “J. Appl. Comput. Sci. Technol.” vol. 1, no. 1, pp. 7–14, 2020.
K. Adil, A. Ahmed, and M. Essaid, “Fire prediction using Machine Learning Algorithms based on the confusion matrix,” pp. 1–11, 2023, [Online]. Available: https://doi.org/10.21203/rs.3.rs-3215936/v1
B. P. Pratiwi and A. Silvia, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi WSN Menggunakan Confusion Matrix,” vol. 6, no. 2, pp. 66–75, 2020, doi: 10.26877/jiu.v6i2.6552.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode GA-TL Pada Algoritma Naive Bayes Untuk Mengatasi Class Imbalance Data Beasiswa KIP-Kuliah
Pages: 2259-2269
Copyright (c) 2025 Dessy Widyastuti, Taghfirul Azhima Yoga Siswa, Rudiman Rudiman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).