Penerapan Metode GA-TL Pada Algoritma Naive Bayes Untuk Mengatasi Class Imbalance Data Beasiswa KIP-Kuliah


  • Dessy Widyastuti Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
  • Taghfirul Azhima Yoga Siswa * Mail Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
  • Rudiman Rudiman Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
  • (*) Corresponding Author
Keywords: Class Imbalance; Genetic Algorithm; Naive Bayes; Random Undersampling; Tomek Links

Abstract

The Indonesia Smart Card (KIP) Scholarship Program aims to support students from underprivileged families in pursuing higher education, yet the distribution of recipient data often experiences class imbalance, leading to inaccuracies in scholarship allocation. This imbalance, characterized by disproportionate data between recipient and non-recipient groups, affects classification model performance, causing models to favor the majority class and overlook the minority class, potentially excluding eligible recipients. To address this issue, this study combines the Genetic Algorithm for feature selection and optimization with Tomek Links-Random Undersampling for data balancing. The research process includes data preprocessing, 10-fold cross-validation, and performance evaluation using a confusion matrix. Results indicate that without Tomek Links-Random Undersampling, Naïve Bayes accuracy increased from 65.2% to 66.0% after feature selection and optimization using the Genetic Algorithm, while applying Tomek Links-Random Undersampling improved accuracy from 56% to 63%. This method also enhanced fairness in recipient classification, promoting a more equitable distribution of benefits. The improved model accuracy significantly aids future scholarship selection processes, demonstrating that integrating efficient machine learning approaches optimizes the KIP Scholarship Program by ensuring beneficiaries are appropriately targeted based on predetermined criteria.

Downloads

Download data is not yet available.

References

W. D. Yuniarti, L. Z. Damayanti, and S. Nur’aini, “Sistem Pendukung Keputusan Penerima Bantuan Kartu Indonesia Pintar dengan Metode Weighted Product,” J. Transform., vol. 20, no. 2, p. 92, 2023, doi: 10.26623/transformatika.v20i2.5877.

P. Sam et al., “Implementasi Pendukung Keputusan Metode Saw Untuk Penerimaan Kip,” Dj djtechno, vol. 5, no. 2, pp. 391–401, 2024, doi: 10.46576/djtechno.

B. G. Dimmera and P. D. P. Purnasari, “Permasalahan Dan Solusi Program Indonesia Pintar Dalam Mewujudkan Pemerataan Pendidikan Di Kabupaten Bengkayang,” Sebatik, vol. 24, no. 2, pp. 307–314, 2020, doi: 10.46984/sebatik.v24i2.1137.

F. A. Nikmah, N. T. Wardani, and N. Matsani, “Apakah Kartu Indonesia Pintar Berhasil Menurunkan Angka Putus Sekolah?,” J. Komun. Pendidik., vol. 4, no. 2, p. 72, 2020, doi: 10.32585/jkp.v4i2.581.

D. A. Shafiq, M. Marjani, R. A. A. Habeeb, and D. Asirvatham, “Student Retention Using Educational Data Mining and Predictive Analytics: A Systematic Literature Review,” IEEE Access, vol. 10, no. June, pp. 72480–72503, 2022, doi: 10.1109/ACCESS.2022.3188767.

A. Karima and T. A. Y. Siswa, “Prediksi Kinerja Mahasiswa Dalam Perkuliahan Berbasis Learning Management System Menggunakan Algoritma Naïve Bayes,” Progresif J. Ilm. Komput., vol. 18, no. 2, p. 211, 2022, doi: 10.35889/progresif.v18i2.922.

D. B. Siswanto and D. Normawati, “Sistem Klasifikasi Monitoring dan Evaluasi Kelayakan Penerima Beasiswa UAD Menggunakan Algoritma Naïve Bayes,” J. Saintekom, vol. 13, no. 2, pp. 161–172, 2023, doi: 10.33020/saintekom.v13i2.428.

T. A. Zuraiyah, M. M. Mulyati, and G. H. F. Harahap, “Perbandingan Metode Naïve Bayes, Support Vector Machine Dan Recurrent Neural Network Pada Analisis Sentimen Ulasan Produk E-Commerce,” Multitek Indones., vol. 17, no. 1, pp. 27–43, 2023, doi: 10.24269/mtkind.v17i1.7092.

A. U. Kurnia, A. S. Budi, and P. H. Susilo, “Sistem Pendukung Keputusan Penerimaan Beasiswa Menggunakan Metode Naive Bayes,” Joutica, vol. 5, no. 2, p. 397, 2020, doi: 10.30736/jti.v5i2.484.

F. M. Febri and D. P. Sari, “Determination of Bank Indonesia Scholarship Recipients Using Naïve Bayes Classifier,” Barekeng J. Ilmu Mat. dan Terap., vol. 17, no. 3, pp. 1595–1604, 2023, doi: 10.30598/barekengvol17iss3pp1595-1604.

A. Wahid, F. Azim, and F. Firdausi, “Application of Data Mining to Classify Receiving Social Assistance Using the Naïve Bayes Method,” Insid. - J. Sist. Inform. Cerdas, vol. 1, no. 2, pp. 62–66, 2023, doi: 10.31967/inside.v1i2.881.

E. A. Alabdulqader et al., “Improving prediction of blood cancer using leukemia microarray gene data and Chi2 features with weighted convolutional neural network,” Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-65315-7.

A. S. Tarawneh, A. B. Hassanat, G. A. Altarawneh, and A. Almuhaimeed, “Stop Oversampling for Class Imbalance Learning: A Review,” IEEE Access, vol. 10, pp. 47643–47660, 2022, doi: 10.1109/Accecs.2022.3169512.

X. Liu, L. Guo, H. Wang, J. Guo, S. Yang, and L. Duan, “Research on imbalance machine learning methods for MR T1 WI soft tissue sarcoma data,” BMC Med. Imaging, vol. 22, no. 1, pp. 1–13, 2022, doi: 10.1186/s12880-022-00876-5.

H. Ardiansyah and M. B. S. Junianto, “Penerapan Algoritma Genetika untuk Penjadwalan Mata Pelajaran,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 329, 2022, doi: 10.30865/mib.v6i1.3418.

S. Katoch, S. S. Chauhan, and V. Kumar, “A Review on Genetic Algorithm: Past, Present, and Future,” Multimed. Tools Appl., vol. 80, 2021, doi: 10. 1007/s11042-020-10139-6.

Y. Religia and D. Maulana, “Genetic Algorithm Optimization on Nave Bayes for Airline Customer Satisfaction Classification,” JISA(Jurnal Inform. dan Sains), vol. 4, no. 2, pp. 121–126, 2021, doi: 10.31326/jisa.v4i2.925.

B. K. Khotimah, M. Miswanto, and H. Suprajitno, “Optimization of feature selection using genetic algorithm in naïve Bayes classification for incomplete data,” Int. J. Intell. Eng. Syst., vol. 13, no. 1, pp. 334–343, 2020, doi: 10.22266/ijies2020.0229.31.

I. S. Ramadhan and A. Salam, “Teknik Random Undersampling untuk Mengatasi Ketidakseimbangan Kelas pada CT Scan Kista Ginjal,” Techno.Com, vol. 23, no. 1, pp. 20–28, 2024, doi: 10.62411/tc.v23i1.9738.

H. Sulistiani, A. Syarif, K. Muludi, and Warsito, “Performance evaluation of feature selections on some ML approaches for diagnosing the narcissistic personality disorder,” Bull. Electr. Eng. Informatics, vol. 13, no. 2, pp. 1383–1391, 2024, doi: 10.11591/eei.v13i2.6717.

A. F. Watratan, A. P. B, D. and D. Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” “J. Appl. Comput. Sci. Technol.” vol. 1, no. 1, pp. 7–14, 2020.

K. Adil, A. Ahmed, and M. Essaid, “Fire prediction using Machine Learning Algorithms based on the confusion matrix,” pp. 1–11, 2023, [Online]. Available: https://doi.org/10.21203/rs.3.rs-3215936/v1

B. P. Pratiwi and A. Silvia, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi WSN Menggunakan Confusion Matrix,” vol. 6, no. 2, pp. 66–75, 2020, doi: 10.26877/jiu.v6i2.6552.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Metode GA-TL Pada Algoritma Naive Bayes Untuk Mengatasi Class Imbalance Data Beasiswa KIP-Kuliah

Dimensions Badge
Article History
Submitted: 2025-01-14
Published: 2025-03-01
Abstract View: 25 times
PDF Download: 18 times
How to Cite
Widyastuti, D., Siswa, T., & Rudiman, R. (2025). Penerapan Metode GA-TL Pada Algoritma Naive Bayes Untuk Mengatasi Class Imbalance Data Beasiswa KIP-Kuliah. Building of Informatics, Technology and Science (BITS), 6(4), 2259-2269. https://doi.org/10.47065/bits.v6i4.6737
Issue
Section
Articles