Perbandingan Metode Naïve Bayes Dengan SVM Pada Analisis Sentimen Aplikasi Pemesanan Tiket Kapal Ferizy
Abstract
In the digital era, user reviews on application platforms play a crucial role in evaluating service quality and customer satisfaction. This study aims to compare two sentiment analysis methods, namely Naive Bayes and Support Vector Machine (SVM), in classifying the sentiment of Ferizy app reviews on PlayStore into positive, negative, and neutral categories. Naive Bayes, known for its simplicity, efficiency on small datasets, and fast training, is compared to SVM, which is recognized for its high performance on complex data with non-linear distributions and its flexibility in kernel usage. This study also evaluates the performance of both methods based on accuracy, precision, recall, and F1-score metrics, particularly in handling class imbalance and noise in the data. The dataset consists of user reviews of the Ferizy application, which are analyzed to identify sentiment patterns and trends. The implementation results show that Naive Bayes achieves an accuracy of 79.27%, while SVM reaches an accuracy of 82.62%. This difference indicates that SVM is superior in handling more complex patterns in review data, although the margin is relatively small. The findings also reveal significant differences between the two methods, particularly in sentiment classification accuracy. Factors such as language complexity, class imbalance, and algorithm parameter selection are found to influence the performance of each method. This study provides valuable insights for application developers to improve service quality based on user sentiment analysis. Additionally, the results are expected to contribute to the development of more advanced and targeted sentiment analysis strategies, particularly in the digital transportation domain.Keyword: Analisis Sentimen; Naïve Bayes; Support Vector Machine; Ferizy; Ulasan
Downloads
References
R. Septia Putra dan R. Dijaya, “Sentiment Analysis on Ferizy Application Reviews Using Support Vector Machine Method [Analisis Sentimen Pada Ulasan Aplikasi Ferizy Menggunakan Metode Support Vector Machine],” UMSIDA, 2023, doi: 10.21070/ups.3441
M. I. Fikri, T. S. Sabrila, Y. Azhar, dan U. M. Malang, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA JURNAL, 2020, doi: 10.32664/smatika.v10i02.455.
D. A. Nugroho dan F. N. Hasan, “Analisis Sentimen Kegiatan Pembersihan Sampah Pada Media Sosial X Menggunakan SVM dan Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 2, hlm. 843, Apr 2024, doi: 10.30865/mib.v8i2.7562.
F. Noor Hasan, “Analisis Sentimen Pengguna Aplikasi CapCut Pada Ulasan di Play Store Menggunakan Metode Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer , vol. 4, no. 4, 2024, doi: 10.30865/klik.v4i4.1555.
M. Y. Siregar, A. Davy Wiranata, dan R. A. Saputra, “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Streaming Vidio Menggunakan Metode Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer , vol. 4, no. 5, hlm. 2419–2429, 2024, doi: 10.30865/klik.v4i5.1787.
L. B. Ilmawan dan M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, hlm. 154–161, Agu 2020, doi: 10.33096/ilkom.v12i2.597.154-161.
F. Setya Ananto dan F. N. Hasan, “Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store,” Jurnal ICT : Information Communication & Technology, vol. 23, no. 1, hlm. 75–80, 2023, doi: 10.56327/ijiscs.v8i2.
A. Gaizka, A. R. Dzikrillah, dan E. Sinduningrum, “Analisis Sentimen Masyarakat Sebelum Dan Sesudah Terpilihnya Gibran Sebagai Cawapres Prabowo Menggunakan Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer , vol. 4, no. 6, 2024, doi: 10.30865/klik.v4i6.1876.
J. Khatib Sulaiman, R. Abdan Syakura, A. Davy Wiranata, U. D. Muhammadiyah HAMKA Jakarta, dan K. Kunci Analisis, “Analisis Sentimen Ulasan Kepuasan Pengguna Aplikasi Bsi Mobile Dengan Menggunakan Naïve Bayes,” Indonesian Journal of Computer Science, vol. 13, no. 3, 2024, doi: 10.33022/ijcs.v13i3.4063.
R. C. Rivaldi, T. D. Wismarini, J. T. Lomba, dan J. Semarang, “Analisis Sentimen Pada Ulasan Produk Dengan Metode Natural Language Processing (NLP) (Studi Kasus Zalika Store 88 Shopee),” JURNAL ILMIAH ELEKTRONIKA DAN KOMPUTER, vol. 17, no. 1, hlm. 120–128, 2024, doi: 10.51903/elkom.v17i1.1680.
B. Rahmatullah, ; Pungkas Budiyono, ; Suwanda, dan A. Saputra, “SENTIMEN ANALISIS APLIKASI FERIZY MENGGUNAKAN ALGORITMA NAIVE BAYES,” Jurnal Ilmu Komputer JIK, vol. VI, no. 03, 2023.
M. Vebika Shyahrin, Y. Sibaroni, dan D. Puspandari, “Penerapan Metode Long Short-Term Memory dan Word2Vec dalam Analisis Sentimen Ulasan pada Aplikasi Ferizy LSTM and Word2Vec Application for Sentiment Analysis of Reviews on Ferizy,” Techno.COM, vol. 22, no. 4, hlm. 833–842, 2023, doi: 10.33633/tc.v22i4.9205.
A. Mudya Yolanda dan R. Tri Mulya, “Implementasi Metode Support Vector Machine untuk Analisis Sentimen pada Ulasan Aplikasi Sayurbox di Google Play Store,” VARIANSI: Journal of Statistics and Its Application on Teaching and Research, vol. 6, no. 2, hlm. 76–83, 2024, doi: 10.35580/variansiunm258.
M. N. Muttaqin dan I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES Journal of Mathematics, vol. 10, no. 2, hlm. 22–27, 2021, [Daring]. Tersedia pada: http://journal.unnes.ac.id/sju/index.php/ujm
Friska Aditia Indriyani, Ahmad Fauzi, dan Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, hlm. 176–184, Jul 2023, doi: 10.37373/tekno.v10i2.419.
A. Komarudin, A. Meutia Hilda, dan C. Author, “Analisis Sentimen Ulasan Aplikasi Identitas Kependudukan Digital Pada Play Store Menggunakan Metode Naïve Bayes,” Computer Science (CO-SCIENCE, vol. 4, no. 1, 2024, doi: 10.31294/coscience.v4i1.2955.
L. B. Ilmawan dan M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, hlm. 154–161, Agu 2020, doi: 10.33096/ilkom.v12i2.597.154-161.
E. Apriani, F. Oktavianalisti, L. D. H. Monasari, I. Winarni, dan I. F. Hanif, “Analisis Sentimen Penggunaan TikTok Sebagai Media Pembelajaran Menggunakan Algoritma Naïve Bayes Classifier,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 3, hlm. 1160–1168, Jul 2024, doi: 10.57152/malcom.v4i3.1482.
N. Wijaya dan E. Setiawan Panjaitan, “Analisis Sentimen Ulasan Aplikasi Instagram di Google Play Store: Pendekatan Multinomial Naive Bayes dan Berbasis Leksikon,” Technology and Science (BITS), vol. 6, no. 2, 2024, doi: 10.47065/bits.v6i2.5615.
I. Oktavia dan A. R. Isnain, “Analisis Sentimen Opini Terhadap Tools Artificial Intelligence (AI) Berdasarkan Twitter Menggunakan Algoritma Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 2, hlm. 777, Apr 2024, doi: 10.30865/mib.v8i2.7524.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Metode Naïve Bayes Dengan SVM Pada Analisis Sentimen Aplikasi Pemesanan Tiket Kapal Ferizy
Pages: 2278-2287
Copyright (c) 2025 Muhammad Sulhan, Erizal Erizal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).