Analisis Sentimen Terhadap Ulasan Aplikasi Disney+ Hotstar Pada Google Playstore Menggunakan Metode Naïve Bayes


  • Reza Al Arsad Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • Erizal Erizal * Mail Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment Analysis; Naïve Bayes; Disney Hotstar; Google Playstore; Review

Abstract

Technology in Indonesia has advanced rapidly, making many changes in all aspects of life, one of which is the online streaming aspect, namely the Disney+ Hotstar application. Now Disney+ Hotstar is available on tablets, smart TVs, computers, and smartphones accessed from various places and times. Disney+ Hotstar has thousands of hours of various Pixar, Marvel films, as well as exclusive Indonesian and various countries' series. Although Disney+ Hotstar has a variety of interesting films and features, it does not guarantee that users are satisfied using the application. Because users have different opinions and assessments, this point can be seen from user reviews available on the Google Playstore. The main purpose of this study was to determine the assessment or sentiment of user reviews of the Disney+ Hotstar application by analyzing it. The technique used uses the Naive Bayes algorithm. A total of 1000 review data were obtained on December 28, 2024 from the Google Playstore via Google Colab, then processed using RapidMiner. The dataset went through the cleaning and preprocessing stages to become 873 review data. There were 128 good reviews and 745 bad reviews. TF-IDF weighting was performed before classification using 873 datasets. The classification stage used a cross-validation system and applied the Naive Bayes approach. Testing from this study revealed the accuracy results of the Naive Bayes algorithm of 76.06%, precision of 34.12%, and recall of 67.97%.

Downloads

Download data is not yet available.

References

N. Juliandhono and M. P. Berlianto, “FAKTOR-FAKTOR YANG MEMPENGARUHI PERCEIVED VALUE DAN IMPLIKASINYA KEPADA INTENTION TO SUBSCRIBE SERTA PENGARUHNYA TERHADAP SOCIAL INFLUENCE PADA APLIKASI STREAMING FILM DISNEY PLUS HOTSTAR,” Jurnal Manajemen Pemasaran, vol. 16, no. 2, pp. 77–86, 2022, doi: 10.9744/pemasaran.16.2.77─86.

A. Indriani, C. Hermana, F. Ekonomi, and S. Karawang, “Analisis Harga Pada Minat Konsumen Dalam Berlangganan Netflix Pasca Pandemi,” JAMBURA, vol. 6, no. 1, 2023, [Online]. Available: http://ejurnal.ung.ac.id/index.php/JIMB

U. Kulsum, M. Jajuli, and N. Sulistiyowati, “Analisis Sentimen Aplikasi WETV di Google Play Store Menggunakan Algoritma Support Vector Machine,” 2022. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

F. Abrari and I. M. Sukresna, “Pengaruh Self Congruity, Perceived Price, Brand Trust, dan Customer Engagement terhadap Willingness to Continue and Subscribe pada Disney Plus Hotstar,” Ekonomis: Journal of Economics and Business, vol. 8, no. 2, p. 1200, Sep. 2024, doi: 10.33087/ekonomis.v8i2.1601.

Sabrina Jovanka and Ade Maulana, “Analisis Kepuasan Pengguna terhadap Layanan Streaming Video dengan Metode E-service quality: Studi Kasus pada Aplikasi Disney Plus,” SATESI: Jurnal Sains Teknologi dan Sistem Informasi, vol. 3, no. 1, pp. 45–51, Apr. 2023, doi: 10.54259/satesi.v3i1.2455.

E. Yuniar, D. S. Utsalinah, and D. Wahyuningsih, “Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning,” Jurnal Janitra Informatika dan Sistem Informasi, vol. 2, no. 1, pp. 35–42, Apr. 2022, doi: 10.25008/janitra.v2i1.145.

N. Febrinikmah Siharta, M. Muzakki Bhaswara, W. Firmantara, and A. Puspita Sari, “Analisis Sentimen Ulasan Pengguna Aplikasi Disney+ Hotstar Menggunakan Naive Bayes Classifier,” Journal of Multidisciplinary Inquiry in Science Technology and Educational Research, vol. 1, no. 4, pp. 1847–1855, 2024, doi: 10.32672/mister.v1i4.2120.

Adam Huda Nugraha, “Analisis Perbandingan User Experience (UX) Pada Aplikasi Netflix Dengan Disney+ Hotstar Menggunakan Metode User Experience Questionnaire (UEQ),” Jurnal Penelitian Teknologi Informasi dan Sains, vol. 2, no. 2, pp. 100–114, Jun. 2024, doi: 10.54066/jptis.v2i2.1944.

S. Fransiska and A. Irham Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Scientific Journal of Informatics, vol. 7, no. 2, pp. 2407–7658, 2020, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji

P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 1020, Aug. 2022, doi: 10.30865/jurikom.v9i4.4673.

R. A. Saputra, D. P. Ray, and F. Irwiensyah, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Aplikasi Tokocrypto Berdasarkan Ulasan Pada Google Play Store Menggunakan Metode Naïve Bayes,” Media Online, vol. 4, no. 4, 2024, doi: 10.30865/klik.v4i4.1707.

S. Vanaja and M. Belwal, “Aspect-Level Sentiment Analysis on E-Commerce Data,” IEEE, Jul. 2018, doi: 10.1109/ICIRCA.2018.8597286.

R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 1, p. 62, Feb. 2022, doi: 10.30865/jurikom.v9i1.3793.

Ernianti Hasibuan and Elmo Allistair Heriyanto, “ANALISIS SENTIMEN PADA ULASAN APLIKASI AMAZON SHOPPING DI GOOGLE PLAY STORE MENGGUNAKAN NAIVE BAYES CLASSIFIER,” Jurnal Teknik dan Science, vol. 1, no. 3, pp. 13–24, Oct. 2022, doi: 10.56127/jts.v1i3.434.

N. Q. Rizkina and F. N. Hasan, “Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes,” Journal of Information System Research (JOSH), vol. 4, no. 4, pp. 1136–1144, Jul. 2023, doi: 10.47065/josh.v4i4.3803.

Gilbert, Syariful Alam, and M. Imam Sulistyo, “ANALISIS SENTIMEN BERDASARKAN ULASAN PENGGUNA APLIKASI MYPERTAMINA PADA GOOGLE PLAYSTORE MENGGUNAKAN METODE NAÏVE BAYES,” STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 3, pp. 100–108, Aug. 2023, doi: 10.55123/storage.v2i3.2333.

H. Zhafran Muflih, A. Rizki Abdillah, and F. Noor Hasan, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Ulasan Pengguna Aplikasi Ajaib Menggunakan Metode Naïve Bayes,” Media Online, vol. 4, no. 3, pp. 1613–1621, 2023, doi: 10.30865/klik.v4i3.1303.

K. Kevin, M. Enjeli, and A. Wijaya, “Analisis Sentimen Pengunaaan Aplikasi Kinemaster Menggunakan Metode Naive Bayes,” Jurnal Ilmiah Computer Science, vol. 2, no. 2, pp. 89–98, Jan. 2024, doi: 10.58602/jics.v2i2.24.

R. Rizaldi and R. Aryanti, “Analisis Sentimen Pengguna Terhadap Aplikasi Indodana Di Google Play Store Menggunakan Metode Naive Bayes Classifier,” Journal of Informatics Management and Information Technology, vol. 3, no. 4, pp. 98–105, 2024, doi: 10.47065/jimat.v4i3.400.

M. Irfan and E. Erizal, “Perbandingan Algoritma Naïve Bayes dengan K-Nearest Neighbor Untuk Analisis Sentimen Aplikasi InDrive di Playstore,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 3, p. 1535, Jul. 2024, doi: 10.30865/mib.v8i3.7780.

M. Iqbal Ahmadi, F. Apriani, M. Kurniasari, S. Handayani, and D. Gustian, “SENTIMENT ANALYSIS ONLINE SHOP ON THE PLAY STORE USING METHOD SUPPORT VECTOR MACHINE (SVM),” Seminar Nasional Informatika, vol. 2020.

A. Rhamadanti, A. Rifa’i, F. Dikananda, and K. Anam, “ANALISIS SENTIMEN PADA ULASAN ACCESS BY KERETA API INDONESIA DENGAN K-NEAREST NEIGHBOR,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 1, pp. 2830–7062, doi: 10.23960/jitet.v12i1.3691.

F. Setya Ananto and F. N. Hasan, “Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store.,” Jurnal ICT : Information Communication & Technology, vol. 23, no. 1, pp. 75–80, 2023.

H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, Feb. 2021, doi: 10.34148/teknika.v10i1.311.

N. Putri Husain, A. Febriana Syam, and R. Mustikosari, “Analisis Sentimen Ulasan Pengguna Tiktok pada Google Play Store Berbasis TF-IDF dan Support Vector Machine,” 2024. [Online]. Available: https://images.app.goo.gl/hC6494uW637VmYVW9

F. N. Rahmaulidyah, M. N. Hayati, and R. Goejantoro, “Perbandingan Metode Klasifikasi Naive Bayes dan K-Nearest Neighbor pada Data Status The Comparison of The Naive Bayes and K-Nearest Neighbor Classification Methods on The Data Payment Status of Value Added Tax at The Samarinda Ulu Pratama Tax Service Office.”

E. Wahyu Sholeha, S. Yunita, R. Hammad, and V. Cahya Hardita, “Analisis Sentimen Pada Agen Perjalanan Online Menggunakan Naïve Bayes dan K-Nearest Neighbor (Sentiment Analysis of Online Travel Agent Using Naïve Bayes and K-Nearest Neighbor),” vol. 3, no. 4, pp. 203–208, 2022.

I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 296, Dec. 2022, doi: 10.30865/json.v4i2.5381.

M. N. Hidayat and R. Pramudita, “Analisis Sentimen Terhadap Pembelajaran Secara Daring Pasca Pandemi Covid-19 Menggunakan Metode IndoBERT,” Information Management for Educators and Professionals, vol. 8, no. 2, pp. 161–170, 2023.

Irvandi, B. Irawan, and O. Nurdiawan, “NAIVE BAYES DAN WORDCLOUD UNTUK ANALISIS SENTIMEN WISATA HALAL PULAU LOMBOK,” INFOTECH journal, vol. 9, no. 1, pp. 236–242, May 2023, doi: 10.31949/infotech.v9i1.5322.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Ulasan Aplikasi Disney+ Hotstar Pada Google Playstore Menggunakan Metode Naïve Bayes

Dimensions Badge
Article History
Submitted: 2025-01-07
Published: 2025-03-01
Abstract View: 14 times
PDF Download: 11 times
How to Cite
Arsad, R., & Erizal, E. (2025). Analisis Sentimen Terhadap Ulasan Aplikasi Disney+ Hotstar Pada Google Playstore Menggunakan Metode Naïve Bayes. Building of Informatics, Technology and Science (BITS), 6(4), 2281-2290. https://doi.org/10.47065/bits.v6i4.6641
Issue
Section
Articles