Komparasi Deteksi Single Shot Detector (SSD) Dengan YouLook (Yolov8) Menggunakan GhostFaceNet Untuk Pengenalan Wajah Pada Dataset Terbatas


  • Pramesya Mutia Salsabila Universitas Dian Nuswantoro, Semarang, Indonesia
  • Ardytha Luthfiarta * Mail Universitas Dian Nuswantoro, Semarang, Indonesia
  • Adhitya Nugraha Universitas Dian Nuswantoro, Semarang, Indonesia
  • Almas Najiib Imam Muttaqin Universitas Dian Nuswantoro, Semarang, Indonesia
  • Yasmine Zarifa Universitas Dian Nuswantoro, Semarang, Indonesia
  • (*) Corresponding Author
Keywords: Deep Learning; Face Recognition; GhostFaceNet; SSD; YOLOv8

Abstract

Face recognition has become a crucial topic in image processing and computer vision, particularly in university environments. This study explores the use of GhostFaceNet and YOLOv8 models to address the challenges of face recognition with a limited dataset, consisting of only one formal photo per individual. By applying image augmentation techniques, we improved the system's accuracy to 85%. GhostFaceNet excels in generating precise and detailed face embeddings, which are essential for accurate recognition. Meanwhile, YOLOv8 demonstrates superior speed in detecting faces under various lighting conditions and angles. Comparative results reveal that YOLOv8 achieves an accuracy of 81%, outperforming SSD, which only reaches 76%. Despite challenges related to the low quality of original images, the findings highlight the significant potential of deep learning-based face recognition systems. This research aims to compare SSD and YOLOv8 detection models using GhostFaceNet and contribute to the development of more effective and reliable face recognition methods in academic settings.

Downloads

Download data is not yet available.

References

J. Deng, J. Guo, D. Zhang, Y. Deng, X. Lu, and S. Shi, “Lightweight Face Recognition Challenge,” in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South): IEEE, Oct. 2019, pp. 2638–2646. doi: 10.1109/ICCVW.2019.00322.

A. Setiawan, R. Sigit, and R. Rokhana, “Face Recognition Using Convolution Neural Network Method with Discrete Cosine Transform Image for Login System,” JOIV : Int. J. Inform. Visualization, vol. 7, no. 2, p. 502, May 2023, doi: 10.30630/joiv.7.2.1546.

L. Li, X. Mu, S. Li, and H. Peng, “A Review of Face Recognition Technology,” IEEE Access, vol. 8, pp. 139110–139120, 2020, doi: 10.1109/ACCESS.2020.3011028.

Thakur Polytechnic and Mr. K. Shaikh, “Criminal Investigation with the Help of Face Recognition,” IJSREM, vol. 08, no. 02, pp. 1–13, Feb. 2024, doi: 10.55041/IJSREM28671.

D. Y. Ardhito, D. Susilo, D. Ruswanti, and D. Retnoningsih, “Optimasi Face Recognition Untuk Presensi Pegawai,” Technical and Vocational Education International Journal (TAVEIJ), vol. 3, no. 2, Art. no. 2, Aug. 2023, doi: 10.556442/taveij.v3i2.306.

N. Dewi and F. Ismawan, “IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CNN UNTUK SISTEM PENGENALAN WAJAH,” FaktorExacta, vol. 14, no. 1, p. 34, Mar. 2021, doi: 10.30998/faktorexacta.v14i1.8989.

M. Kim, A. K. Jain, and X. Liu, “AdaFace: Quality Adaptive Margin for Face Recognition,” Feb. 16, 2023, arXiv: arXiv:2204.00964. doi: 10.48550/arXiv.2204.00964.

F. Boutros, N. Damer, M. Fang, F. Kirchbuchner, and A. Kuijper, “MixFaceNets: Extremely Efficient Face Recognition Networks,” Jul. 27, 2021, arXiv: arXiv:2107.13046. doi: 10.48550/arXiv.2107.13046.

H. Kim, H. Choi, and Y. Kwak, “Federated Learning for Face Recognition via Intra-subject Self-supervised Learning,” Jul. 23, 2024, arXiv: arXiv:2407.16289. doi: 10.48550/arXiv.2407.16289.

N. I. Burhanudin, A. D. Laksito, A. Sidauruk, M. R. A. Yudianto, and A. N. Rahmi, “Object Recognition with SSD MobileNet Pre-Trained Model in the Cashier Application,” SISFOKOM, vol. 12, no. 2, pp. 265–270, Jul. 2023, doi: 10.32736/sisfokom.v12i2.1659.

R. D. Djohari, H. R. Ngemba, S. Hendra, D. S. Angraeni, N. T. Lapatta, and D. W. Nugraha, “Employee Attendance System with Facial Recognition Technology Using a Single Shot Detector (SSD) Algorithm,” JITE, vol. 7, no. 2, pp. 424–434, Jan. 2024, doi: 10.31289/jite.v7i2.10869.

Q. Xu, Z. Zhu, H. Ge, Z. Zhang, and X. Zang, “Effective Face Detector Based on YOLOv5 and Superresolution Reconstruction,” Computational and Mathematical Methods in Medicine, vol. 2021, pp. 1–9, Nov. 2021, doi: 10.1155/2021/7748350.

M. Alansari, O. A. Hay, S. Javed, A. Shoufan, Y. Zweiri, and N. Werghi, “GhostFaceNets: Lightweight Face Recognition Model From Cheap Operations,” IEEE Access, vol. 11, pp. 35429–35446, 2023, doi: 10.1109/ACCESS.2023.3266068.

Muhammad Indra Ardiawan and Gede Putra Kusuma Negarara, “Comparative Analysis of FaceNet, VGGFace, and GhostFaceNets Face Recognition Algorithms For Potential Criminal Suspect Identification,” J. Appl. Artif. Intell., vol. 5, no. 2, pp. 34–49, Sep. 2024, doi: 10.48185/jaai.v5i2.1237.

C. Fang and X. Yang, “Lightweight YOLOv8 for Wheat Head Detection,” IEEE Access, vol. 12, pp. 66214–66222, 2024, doi: 10.1109/ACCESS.2024.3397556.

Y. Wang, K. Zhang, L. Wang, and L. Wu, “An Improved YOLOv8 Algorithm for Rail Surface Defect Detection,” IEEE Access, vol. 12, pp. 44984–44997, 2024, doi: 10.1109/ACCESS.2024.3380009.

S. Porcu, A. Floris, and L. Atzori, “Evaluation of Data Augmentation Techniques for Facial Expression Recognition Systems,” Electronics, vol. 9, no. 11, p. 1892, Nov. 2020, doi: 10.3390/electronics9111892.

Fernando Situmorang, Gilbert and R. Purba, “Deteksi Potensi Depresi dari Unggahan Media Sosial X Menggunakan Teknik NLP dan Model IndoBERT,” Technology and Science (BITS), vol. 6, no. 2, 2024, doi: 10.47065/bits.v6i2.5496.

N. Mardiana, R. D. Dana, Faisal, I. Farida, A. G. Azwar, and Nurwathi, “Similarity Measures Implementation on Face Authentication using Indonesian Citizen ID Card,” in 2023 17th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Lombok, Indonesia: IEEE, Oct. 2023, pp. 1–5. doi: 10.1109/TSSA59948.2023.10366880.

K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet: More Features from Cheap Operations,” Mar. 13, 2020, arXiv: arXiv:1911.11907. doi: 10.48550/arXiv.1911.11907.

C. Oinar, B. M. Le, and S. S. Woo, “KappaFace: Adaptive Additive Angular Margin Loss for Deep Face Recognition,” IEEE Access, vol. 11, pp. 137138–137150, 2023, doi: 10.1109/ACCESS.2023.3338648.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Komparasi Deteksi Single Shot Detector (SSD) Dengan YouLook (Yolov8) Menggunakan GhostFaceNet Untuk Pengenalan Wajah Pada Dataset Terbatas

Dimensions Badge
Article History
Submitted: 2024-11-08
Published: 2024-12-23
Abstract View: 75 times
PDF Download: 57 times
How to Cite
Salsabila, P., Luthfiarta, A., Nugraha, A., Muttaqin, A., & Zarifa, Y. (2024). Komparasi Deteksi Single Shot Detector (SSD) Dengan YouLook (Yolov8) Menggunakan GhostFaceNet Untuk Pengenalan Wajah Pada Dataset Terbatas. Building of Informatics, Technology and Science (BITS), 6(3), 1760-1768. https://doi.org/10.47065/bits.v6i3.6225
Issue
Section
Articles