The The Comparison RNN and Maximum Entropy on Aspect-Based Sentiment Analysis of Gojek Application


  • Nida Umulhoir * Mail Universitas Telkom, Indonesia
  • Yuliant Sibaroni Telkom University, Indonesia
  • Fitriyani Fitriyani Telkom University, Indonesia
  • (*) Corresponding Author
Keywords: Gojek; Setiment Analysis; Maximum Entropy; Recurrent Neural Network; Chi-Square

Abstract

Nowadays, mobile applications can help a person to carry out daily activities. The use of mobile applications is also increasingly in demand by the public. One of the most popular online transportation applications in Indonesia is Gojek, with the top level of the most downloads in Indonesia. However, Gojek also experienced a significant decline from the previous download results. This is used as sentiment analysis by the author to find out how users rated Gojek application reviews from various points of view.

This research compares two methods, namely Maximum Entropy and Recurrent Neural Network (RNN) using Chi-Square as feature selection and TF-IDF as feature extraction for each aspect of Availability, System, Comfort, and Transaction. As for the results of user analysis of four aspects with positive and negative sentiment, it is carried out with a 70:30 comparison ratio because it gets a better accuracy result value. The results show that the RNN method gets a better accuracy value than the Maximum Entropy method, with an accuracy value in the accessibility aspect of 90%, system aspect of 89%, comfort aspect of 80%, and comfort aspect of 80%.

Downloads

Download data is not yet available.

References

Santika Erlina F, “Aplikasi Transportasi Online Terbanyak Diunduh di RI 2023, Gojek Juaranya,” 2023, DATABOKS.

M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

H. G. Sulistio and A. Handojo, “Aspect-Based Sentiment Analysis pada Ulasan ECommerce dengan Metode Support Vector Machine untuk Mendapatkan Informasi Sentimen dari Beberapa Aspek,” J. Infra, vol. 10, no. 2, pp. 1–5, 2022.

E. Dwianto and M. Sadikin, “Analisis Sentimen Transportasi Online pada Twitter Menggunakan Metode Klasifikasi Naïve Bayes dan Support Vector Machine,” Format J. Ilm. Tek. Inform., vol. 10, no. 1, p. 94, 2021, doi: 10.22441/format.2021.v10.i1.009.

D. J. M. Pasaribu, K. Kusrini, and S. Sudarmawan, “Peningkatan Akurasi Klasifikasi Sentimen Ulasan Makanan Amazon dengan Bidirectional LSTM dan Bert Embedding,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, 2020, doi: 10.35585/inspir.v10i1.2568.

S. Fan, J. Yao, Y. Sun, and Y. Zhan, “A summary of aspect-based sentiment analysis,” J. Phys. Conf. Ser., vol. 1624, no. 2, 2020, doi: 10.1088/1742-6596/1624/2/022051.

H. Chyntia Morama, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, pp. 1702–1708, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

M. F. Putra, A. Herdiani, and D. Puspandari, “Analisis Pengaruh Normalisasi, TF-IDF, Pemilihan Feature-set Terhadap Klasifikasi Sentimen Menggunakan Maximum Entropy (Studi Kasus : Grab dan Gojek),” e-Proceeding Eng., pp. 8520–8529, 2019.

C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 422, 2021, doi: 10.30865/mib.v5i2.2845.

Novirianto, “Analisis Sentimen Berbasis Aspek Pada UlasanAplikasi Mybluebird Dengan Implementasi N-GramDan Algoritma Logistic Regression,” 2023, [Online]. Available: https://repository.uinjkt.ac.id/dspace/bitstream/123456789/76656/1/IQBAL FARIZ NOVIRIANTO-FST.pdf

N. K. Shadrina, E. Sutoyo, and V. P. Widartha, “Sentiment Analysis in Reviews About Beaches in Bali on Tripadvisor Using Recurrent Neural Network (RNN),” Proc. - 2021 IEEE 7th Inf. Technol. Int. Semin. ITIS 2021, 2021, doi: 10.1109/ITIS53497.2021.9791501.

D. Atika, A. Ari Aldino, S. Informasi, J. Pagar Alam No, L. Ratu, and K. Kedaton, “Term Frequency-Inverse Document Frequency Support Vector Machine Untuk Analisis Sentimen Opini Masyarakat Terhadap Tekanan Mental Pada Media Sosial Twitter,” J. Teknol. dan Sist. Inf., vol. 3, no. 4, p. page-page, 2022, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The impact of features extraction on the sentiment analysis,” Procedia Comput. Sci., vol. 152, pp. 341–348, 2019, doi: 10.1016/j.procs.2019.05.008.

F. M. Rizky, J. Jondri, and K. M. Lhaksmana, “Twitter Sentiment Analysis of Kanjuruhan Disaster using Word2Vec and Support Vector Machine,” Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 219–227, 2023, doi: 10.47065/bits.v5i1.3612.

S. Anisah, A. S. Honggowibowo, and A. Pujiastuti, “Klasifikasi Teks Menggunakan Chi Square Feature Selection Untuk Menentukan Komik Berdasarkan Periode, Materi Dan Fisikdengan Algoritma Naivebayes,” Compiler, vol. 5, no. 2, pp. 59–66, 2016, doi: 10.28989/compiler.v5i2.171.

F. A. Tamardina, H. Yasin, and D. Ispriyanti, “Analisis Sentimen Review Aplikasi Cryptocurrency Menggunakan Algoritma Maximum Entropy Dengan Metode Pembobotan Tf, Tf-Idf Dan Binary,” J. Gaussian, vol. 11, no. 1, pp. 1–10, 2022, doi: 10.14710/j.gauss.v11i1.34004.

A. Onan, “Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 2098–2117, 2022, doi: 10.1016/j.jksuci.2022.02.025.

M. K. Hasan and E. B. Setiawan, “Sentiment Analysis of Twitter Data on Bank Central Asia Stocks (BBCA) Using RNN and CNN Model with GloVe Feature Expansion,” Proceeding - COMNETSAT 2023 IEEE Int. Conf. Commun. Networks Satell., no. November 2023, pp. 195–200, 2023, doi: 10.1109/COMNETSAT59769.2023.10420731.

K. S. Putri, I. R. Setiawan, and A. Pambudi, “Analisis Sentimen Terhadap Brand Skincare Lokal Menggunakan Naïve Bayes Classifier,” Technol. J. Ilm., vol. 14, no. 3, p. 227, 2023, doi: 10.31602/tji.v14i3.11259.

N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Sekolah Daring pada Twitter Menggunakan Supervised Machine Learning,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 47–58, 2021, doi: 10.28932/jutisi.v7i1.3216.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel The The Comparison RNN and Maximum Entropy on Aspect-Based Sentiment Analysis of Gojek Application

Dimensions Badge
Article History
Submitted: 2024-08-10
Published: 2024-09-12
Abstract View: 15 times
PDF Download: 15 times
How to Cite
Umulhoir, N., Sibaroni, Y., & Fitriyani, F. (2024). The The Comparison RNN and Maximum Entropy on Aspect-Based Sentiment Analysis of Gojek Application. Building of Informatics, Technology and Science (BITS), 6(2), 1083-1091. https://doi.org/10.47065/bits.v6i2.5767
Section
Articles