Multi-aspect Sentiment Analysis of Shopee Application Reviews using RNN Method and Query Expansion Ranking


  • Ariqoh Novitasari Telkom University, Indonesia
  • Yuliant Sibaroni * Mail Telkom University, Indonesia
  • Diyas Puspandari Telkom University, Indonesia
  • (*) Corresponding Author
Keywords: Google Play Store; Recurrent Neural Network; Reviews; Shopee; Query Expansion Ranking

Abstract

Online shopping using e-commerce is a common activity society does in this digital era. Shopee is one of the well-known e-commerce in Indonesia. There are a lot of e-commerce platforms that can easily be accessed through mobile applications like Google Play Store. Users are allowed to review and rate the application they have downloaded. The reviews from the users become an opportunity for e-commerce companies to advance their performances and services. To enhance the understandability of user reviews, a system that can efficiently analyze the sentiment is needed.  This study aims to design and establish a system that can perform sentiment analysis on the selected aspects. Sentiment classification is implemented by using the Recurrent Neural Network (RNN) algorithm and Query Expansion Ranking feature selection to classify Shopee application reviews into two classes, which are positive and negative. Feature selection is used to reduce less useful features so that the classification model conducts the classification process optimally and more efficiently. In conclusion, the evaluation results based on an 80:20 data split ratio indicate that the RNN achieves the highest accuracy of 95% in the delivery cost aspect, 93% in the delivery speed aspect, and 86% in the application access aspect.

Downloads

Download data is not yet available.

References

K. Simon, “Digital 2023 : Indonesia,” Datareportal. Accessed: Jan. 05, 2024. [Online]. Available: https://datareportal.com/reports/digital-2023-indonesia

A. N. Ardianti and Widiartanto, “Pengaruh Online Customer Review dan Online Customer Rating terhadap Keputusan Pembelian melalui Marketplace Shopee (Studi pada Mahasiswa Aktif FISIP Undip),” 2019. [Online]. Available: http://teknonisme.com

D. Pratmanto, R. Rousyati, F. F. Wati, A. E. Widodo, S. Suleman, and R. Wijianto, “App Review Sentiment Analysis Shopee Application in Google Play Store Using Naive Bayes Algorithm,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Nov. 2020. doi: 10.1088/1742-6596/1641/1/012043.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and Samudi, “ANALISIS SENTIMEN ZOOM CLOUD MEETINGS DI PLAY STORE MENGGUNAKAN NAÏVE BAYES DAN SUPPORT VECTOR MACHINE,” 2020.

M. Afdal and L. Waroka, “Shopee Application Review Classification Using Probabilistic Neural Network Algorithm And K-Nearest Neighbor,” IJIRSE Indones. J. Inform. Res. Softw. Eng., vol. 2, pp. 49–58, 2022.

F. V. Sari and A. Wibowo, “ANALISIS SENTIMEN PELANGGAN TOKO ONLINE JD.ID MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER BERBASIS KONVERSI IKON EMOSI,” J. SIMETRIS, vol. 10, no. 2, 2019.

S. A. Azzahra and A. Wibowo, “ANALISIS SENTIMEN MULTI-ASPEK BERBASIS KONVERSI IKON EMOSI DENGAN ALGORITME NAÏVE BAYES UNTUK ULASAN WISATA KULINER PADA WEB TRIPADVISOR,” . Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 7, no. 4, 2020, doi: 10.25126/jtiik.202071907.

D. T. Adherda, M. Hikmatyar, and Ruuhwan, “GENDER CLASSIFICATION BASED ON VOICE USING RECURRENT NEURAL NETWORK (RNN),” Antivirus J. Ilm. Tek. Inform., vol. 17, no. 1, pp. 111–122, Oct. 2023, doi: 10.35457/antivirus.v17i1.3049.

L. Kurniasari and A. Setyanto, “Sentiment Analysis using Recurrent Neural Network,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2020. doi: 10.1088/1742-6596/1471/1/012018.

F. Faturohman, B. Irawan, and C. Setianingsih, “ANALISIS SENTIMEN PADA BPJS KESEHATAN MENGGUNAKAN RECURRENT NEURAL NETWORK,” 2020.

A. Patel and A. K. Tiwari, “Sentiment Analysis by using Recurrent Neural Network,” 2019. [Online]. Available: https://ssrn.com/abstract=3349572

L. M. Siniwi, A. Prahutama, and A. R. Hakim, “Query Expansion Ranking Pada Analisis Sentimen Menggunakan Klasifikasi Multinomial Naïve Bayes,” J. Gaussian, vol. 10, pp. 377–387, 2021.

Y. A. V. Gunawan, N. A. S. ER, I. B. M. Mahendra, I. M. Widiartha, I. G. N. A. C. Putra, and I. G. A. G. A. Kadyanan, “Analisis Sentimen Ulasan Aplikasi Transportasi Online Menggunakan Multinomial Naïve Bayes dan Query Expansion Ranking,” J. Elektron. Ilmu Komput. Udayana, vol. 11, 2022, [Online]. Available: http://hikaruyuuki.lecture.ub.ac.id/kamus-kata-dasar-dan-stopword-list-bahasa-indonesia/

W. Astriningsih and D. H. Fudholi, “Multi Aspek Sentimen Analisis pada Review Hotel Menggunakan Deep learning,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 10, no. 3, p. 433, 2023, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/5321

R. Naquitasia, D. H. Fudholi, and L. Iswari, “Analisis Sentimen Berbasis Aspek pada Wisata Halal dengan Metode Deep Learning,” J. Teknoinfo, vol. 16, no. 2, p. 156, 2022, doi: 10.33365/jti.v16i2.1516.

M. Lestandy, A. Abdurrahim, and L. Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 802–808, Aug. 2021, doi: 10.29207/resti.v5i4.3308.

P. H. Prastyo, I. Ardiyanto, and R. Hidayat, “A Combination of Query Expansion Ranking and GA-SVM,” Procedia Comput. Sci., 2021.

M. Yusran, S. Siswanto, and A. Islamiyati, “Comparison of Multinomial Naïve Bayes and Bernoulli Naïve Bayes on Sentiment Analysis of Kurikulum Merdeka with Query Expansion Ranking,” 2024. [Online]. Available: http://sistemasi.ftik.unisi.ac.id

N. F. Putri, M. F. Hidayattullah, and D. I. Af’idah, “Sentimen Analisis Kota Tegal Berbasis Aspek Menggunakan Algoritma Naïve Bayes,” Infomatek, vol. 26, no. 1, pp. 45–54, 2024, doi: 10.23969/infomatek.v26i1.11209.

P. Whita, F. A. Bachtiar, and N. Y. Setiawan, “Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naive Bayes Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 4, pp. 1090–1099, 2020, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7134

H. Atsqalani, N. Hayatin, and C. S. K. Aditya, “Sentiment Analysis from Indonesian Twitter Data Using Support Vector Machine And Query Expansion Ranking,” J. Online Inform., vol. 7, no. 1, p. 116, Jun. 2022, doi: 10.15575/join.v7i1.669.

A. D. A. Putra and S. Juanita, “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma KNN,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 2, 2021, [Online]. Available: http://jurnal.mdp.ac.id

D. Yolanda, K. Gunadi, and E. Setyati, “Pengenalan Alfabet Bahasa Isyarat Tangan Secara Real-Time dengan Menggunakan Metode Convolutional Neural Network dan Recurrent Neural Network,” 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Multi-aspect Sentiment Analysis of Shopee Application Reviews using RNN Method and Query Expansion Ranking

Dimensions Badge
Article History
Submitted: 2024-07-17
Published: 2024-09-09
Abstract View: 16 times
PDF Download: 12 times
How to Cite
Novitasari, A., Sibaroni, Y., & Puspandari, D. (2024). Multi-aspect Sentiment Analysis of Shopee Application Reviews using RNN Method and Query Expansion Ranking. Building of Informatics, Technology and Science (BITS), 6(2), 825-834. https://doi.org/10.47065/bits.v6i2.5605
Section
Articles