Multi-aspect Sentiment Analysis of Shopee Application Reviews using RNN Method and Query Expansion Ranking
Abstract
Online shopping using e-commerce is a common activity society does in this digital era. Shopee is one of the well-known e-commerce in Indonesia. There are a lot of e-commerce platforms that can easily be accessed through mobile applications like Google Play Store. Users are allowed to review and rate the application they have downloaded. The reviews from the users become an opportunity for e-commerce companies to advance their performances and services. To enhance the understandability of user reviews, a system that can efficiently analyze the sentiment is needed. This study aims to design and establish a system that can perform sentiment analysis on the selected aspects. Sentiment classification is implemented by using the Recurrent Neural Network (RNN) algorithm and Query Expansion Ranking feature selection to classify Shopee application reviews into two classes, which are positive and negative. Feature selection is used to reduce less useful features so that the classification model conducts the classification process optimally and more efficiently. In conclusion, the evaluation results based on an 80:20 data split ratio indicate that the RNN achieves the highest accuracy of 95% in the delivery cost aspect, 93% in the delivery speed aspect, and 86% in the application access aspect.
Downloads
References
K. Simon, “Digital 2023 : Indonesia,” Datareportal. Accessed: Jan. 05, 2024. [Online]. Available: https://datareportal.com/reports/digital-2023-indonesia
A. N. Ardianti and Widiartanto, “Pengaruh Online Customer Review dan Online Customer Rating terhadap Keputusan Pembelian melalui Marketplace Shopee (Studi pada Mahasiswa Aktif FISIP Undip),” 2019. [Online]. Available: http://teknonisme.com
D. Pratmanto, R. Rousyati, F. F. Wati, A. E. Widodo, S. Suleman, and R. Wijianto, “App Review Sentiment Analysis Shopee Application in Google Play Store Using Naive Bayes Algorithm,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Nov. 2020. doi: 10.1088/1742-6596/1641/1/012043.
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and Samudi, “ANALISIS SENTIMEN ZOOM CLOUD MEETINGS DI PLAY STORE MENGGUNAKAN NAÏVE BAYES DAN SUPPORT VECTOR MACHINE,” 2020.
M. Afdal and L. Waroka, “Shopee Application Review Classification Using Probabilistic Neural Network Algorithm And K-Nearest Neighbor,” IJIRSE Indones. J. Inform. Res. Softw. Eng., vol. 2, pp. 49–58, 2022.
F. V. Sari and A. Wibowo, “ANALISIS SENTIMEN PELANGGAN TOKO ONLINE JD.ID MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER BERBASIS KONVERSI IKON EMOSI,” J. SIMETRIS, vol. 10, no. 2, 2019.
S. A. Azzahra and A. Wibowo, “ANALISIS SENTIMEN MULTI-ASPEK BERBASIS KONVERSI IKON EMOSI DENGAN ALGORITME NAÏVE BAYES UNTUK ULASAN WISATA KULINER PADA WEB TRIPADVISOR,” . Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 7, no. 4, 2020, doi: 10.25126/jtiik.202071907.
D. T. Adherda, M. Hikmatyar, and Ruuhwan, “GENDER CLASSIFICATION BASED ON VOICE USING RECURRENT NEURAL NETWORK (RNN),” Antivirus J. Ilm. Tek. Inform., vol. 17, no. 1, pp. 111–122, Oct. 2023, doi: 10.35457/antivirus.v17i1.3049.
L. Kurniasari and A. Setyanto, “Sentiment Analysis using Recurrent Neural Network,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2020. doi: 10.1088/1742-6596/1471/1/012018.
F. Faturohman, B. Irawan, and C. Setianingsih, “ANALISIS SENTIMEN PADA BPJS KESEHATAN MENGGUNAKAN RECURRENT NEURAL NETWORK,” 2020.
A. Patel and A. K. Tiwari, “Sentiment Analysis by using Recurrent Neural Network,” 2019. [Online]. Available: https://ssrn.com/abstract=3349572
L. M. Siniwi, A. Prahutama, and A. R. Hakim, “Query Expansion Ranking Pada Analisis Sentimen Menggunakan Klasifikasi Multinomial Naïve Bayes,” J. Gaussian, vol. 10, pp. 377–387, 2021.
Y. A. V. Gunawan, N. A. S. ER, I. B. M. Mahendra, I. M. Widiartha, I. G. N. A. C. Putra, and I. G. A. G. A. Kadyanan, “Analisis Sentimen Ulasan Aplikasi Transportasi Online Menggunakan Multinomial Naïve Bayes dan Query Expansion Ranking,” J. Elektron. Ilmu Komput. Udayana, vol. 11, 2022, [Online]. Available: http://hikaruyuuki.lecture.ub.ac.id/kamus-kata-dasar-dan-stopword-list-bahasa-indonesia/
W. Astriningsih and D. H. Fudholi, “Multi Aspek Sentimen Analisis pada Review Hotel Menggunakan Deep learning,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 10, no. 3, p. 433, 2023, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/5321
R. Naquitasia, D. H. Fudholi, and L. Iswari, “Analisis Sentimen Berbasis Aspek pada Wisata Halal dengan Metode Deep Learning,” J. Teknoinfo, vol. 16, no. 2, p. 156, 2022, doi: 10.33365/jti.v16i2.1516.
M. Lestandy, A. Abdurrahim, and L. Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 802–808, Aug. 2021, doi: 10.29207/resti.v5i4.3308.
P. H. Prastyo, I. Ardiyanto, and R. Hidayat, “A Combination of Query Expansion Ranking and GA-SVM,” Procedia Comput. Sci., 2021.
M. Yusran, S. Siswanto, and A. Islamiyati, “Comparison of Multinomial Naïve Bayes and Bernoulli Naïve Bayes on Sentiment Analysis of Kurikulum Merdeka with Query Expansion Ranking,” 2024. [Online]. Available: http://sistemasi.ftik.unisi.ac.id
N. F. Putri, M. F. Hidayattullah, and D. I. Af’idah, “Sentimen Analisis Kota Tegal Berbasis Aspek Menggunakan Algoritma Naïve Bayes,” Infomatek, vol. 26, no. 1, pp. 45–54, 2024, doi: 10.23969/infomatek.v26i1.11209.
P. Whita, F. A. Bachtiar, and N. Y. Setiawan, “Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naive Bayes Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 4, pp. 1090–1099, 2020, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7134
H. Atsqalani, N. Hayatin, and C. S. K. Aditya, “Sentiment Analysis from Indonesian Twitter Data Using Support Vector Machine And Query Expansion Ranking,” J. Online Inform., vol. 7, no. 1, p. 116, Jun. 2022, doi: 10.15575/join.v7i1.669.
A. D. A. Putra and S. Juanita, “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma KNN,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 2, 2021, [Online]. Available: http://jurnal.mdp.ac.id
D. Yolanda, K. Gunadi, and E. Setyati, “Pengenalan Alfabet Bahasa Isyarat Tangan Secara Real-Time dengan Menggunakan Metode Convolutional Neural Network dan Recurrent Neural Network,” 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Multi-aspect Sentiment Analysis of Shopee Application Reviews using RNN Method and Query Expansion Ranking
Pages: 825-834
Copyright (c) 2024 Ariqoh Novitasari, Yuliant Sibaroni, Diyas Puspandari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).