Analisis Sentimen Konsumen terhadap Food, Services, and Value di Restoran dan Rumah Makan Populer Kota Makassar Berdasarkan Rekomendasi Tripadvisor Menggunakan Metode CRISP-DM dan SERVQUAL
Abstract
Culinary is one of the economic activities that support national economic growth and represents the gastronomy of the archipelago in Indonesia. Culinary tourism activities have become famous for domestic and foreign tourists to experience the taste of a food based on the culture of each region. Makassar is one of the regions with diverse types of food and beverages and has a relationship with local socio-cultural values. Considering this, this study aims to analyze consumer sentiment toward food and services in ten restaurants in Makassar based on the recommendations of the Tripadvisor website using the Cross-Industry Standard Process for Data Mining (CRISPD-DM) and Service Quality (SERVQUAL) methods. The stages of CRISP-DM are as follows: the stage of understanding business processes; the stage of understanding data; the stage of preparing data; the modeling stage; the evaluation stage; and the deployment stage. The algorithms used as models are k-Nearest Neighbor (kNN), Naïve Bayes Classifier (NBC), Decision Tree (DT), and Support Vector Machine (SVM). The results of this study show that the DT algorithm when using the SMOTE operator where the resulting accuracy value is 93.25%, precision is 88.74%, recall is 99.10%, and f-measure is 93.62%. In addition, the k-NN algorithm without using the SMOTE operator showed an accuracy value of 98.72%, a precision of 98.72%, a recall of 100%, and an f-measure of 99.36%. However, the resulting AUC value is 0.905 (90.5%). Meanwhile, when using the SMOTE operator, the SVM algorithm produces an accuracy value of 99.42%, a precision of 100%, a recall of 98.84%, and an f-measure of 99.42%. Meanwhile, the resulting AUC value is 1,000 (100%). Based on the ROC value, three algorithms can be used as models in the CRISPP-DM and SERVQUAL frameworks: the k-NN algorithm without SMOTE and the DT and SVM algorithms using the SMOTE operator
Downloads
References
A. N. S. Aidah, “Pengaruh Persepsi Harga dan Kualitas Produk Terhadap Keputusan Pembelian Konsumen,” PERFORMA J. Manaj. dan Start-Up Bisnis, vol. 5, no. 1, pp. 35–43, 2020, doi: 10.35134/ekobistek.v10i2.114.
M. R. Sani, M. N. Alia, and D. Riyadi, “Sate Padang Sumatera Barat Sebagai Gastronomi Unggulan di Indonesia,” J. Gastron. Tour., vol. 3, no. 2, pp. 103–111, 2016, [Online]. Available: http://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203
A. M. Raharjo, C. Djoko, and E. Melini, “Identifikasi Permasalahan Desain Identitas Visual Restoran Gado-Gado Boplo,” in Koma DKV 2021, 2022, vol. 2, no. 2021, pp. 37–44.
I. A. Mastan and Y. Toni, “Analisis Sentimen terhadap Tempat Kuliner Ayam Gedebuk dari Komentar Pengunjung dengan Menggunakan Naive Bayes Classifier,” J. Bus. Audit Inf. Syst., vol. 3, no. 1, pp. 42–50, 2020.
S. A. Azzahra and A. Wibowo, “Analisis Sentimen Multi-Aspek Berbasis Konversi Ikon Emosi dengan Algoritme Naïve Bayes untuk Ulasan Wisata Kuliner Pada Web Tripadvisor,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, pp. 737–743, 2020, doi: 10.25126/jtiik.2020731907.
M. R. Fauzi, R. A. Pratama, P. Laksono, and P. Eosina, “Analisis Big Data Sentimen Konsumen UMKM Sektor Kuliner Menggunakan Multi-Label k-Nearest Neighbor,” Krea-TIF J. Tek. Inform., vol. 9, no. 1, pp. 9–20, 2021, doi: 10.32832/kreatif.v9i1.3587.
R. Sari, “Analisis Sentimen Review Restoran menggunakan Algoritma Naive Bayes berbasis Particle Swarm Optimization,” J. Inform., vol. 6, no. 1, pp. 23–28, 2019, doi: 10.31311/ji.v6i1.4695.
Y. A. Singgalen, “Analisis Sentimen Wisatawan terhadap Taman Nasional Bunaken dan Top 10 Hotel Rekomendasi Tripadvisor Menggunakan Algoritma SVM dan DT berbasis CRISP-DM,” J. Comput. Syst. Informatics, vol. 4, no. 2, pp. 367–379, 2023, doi: 10.47065/josyc.v4i2.3092.
Y. A. Singgalen, “Analisis Perilaku Wisatawan Berdasarkan Data Ulasan di Website Tripadvisor Menggunakan CRISP-DM : Wisata Minat Khusus Pendakian Gunung Rinjani dan Gunung Bromo,” J. Comput. Syst. Informatics, vol. 4, no. 2, pp. 326–338, 2023, doi: 10.47065/josyc.v4i2.3042.
Y. A. Singgalen, “Analisis Sentimen Pengunjung Pulau Komodo dan Pulau Rinca di Website Tripadvisor Berbasis CRISP-DM,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 614–625, 2023, doi: 10.47065/josh.v4i2.2999.
Y. A. Singgalen, “Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier,” Build. Informatics, Technol. Sci., vol. 4, no. 3, p. 1343−1352, 2022, doi: 10.47065/bits.v4i3.2486.
Y. A. Singgalen, “Analisis Performa Algoritma NBC , DT , SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1634–1646, 2022, doi: 10.47065/bits.v4i3.2766.
S. K. S. Conde, C. T. Hernandez, E. M. Huerta, G. I. Tellez, and A. T. Lopez, “Analysis of Service Quality in the Restaurant Sector in the State of Tlaxcala Using The Servqual Model,” J. Econ. Financ. Manag. Stud., vol. 5, no. 3, pp. 871–880, 2022, doi: 10.47191/jefms/v5-i3-37.
A. M. Putra, I. N. J. Ariana, A. S. Sulistyawati, I. N. T. Sutaguna, and N. Narottama, “Pengolahan dan Pengemasan Kuliner Lokal di Desa Wisata Tista Kecamatan Kerambitan Kabupaten Tabanan,” Bul. Udayana Mengabdi, vol. 21, no. 4, pp. 326–331, 2022.
Samtono, E. Rahayu, and Y. D. Risyanti, “Upaya Pengembangan Ekonomi Kreatif Sektor Wisata Kuliner Kampung Singkong,” Reson. J. Ilm. Pengabdi. Masy., vol. 6, no. 2, pp. 153–161, 2022.
S. Utami, “Kuliner Sebagai Identitas Budaya: Perspektif Komunikasi Lintas Budaya,” Cover. J. Strateg. Commun., vol. 8, no. 2, pp. 36–44, 2018, doi: 10.35814/coverage.v8i2.588.
Rusmaniah, Herman, P. D. Indriyani, R. M. Sari, and D. A. Nugroho, “Pelestarian Kuliner Lokal Jengkol Tahilala Sebagai Warisan Dan Perwujudan Nilai Budaya Banjar Di Desa Pingaran,” Anterior J., vol. 21, no. 3, pp. 57–61, 2022, doi: 10.33084/anterior.v21i3.3502.
R. Annisa, “Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung,” J. Tek. Inform. Kaputama, vol. 3, no. 1, pp. 22–28, 2019, [Online]. Available: https://jurnal.kaputama.ac.id/index.php/JTIK/article/view/141/156
S. Dewi, “Komparasi Metode Algoritma Data Mining pada Prediksi Uji Kelayakan Credit Approval pada Calon Nasabah Kredit Perbankan,” J. Khatulistiwa Inform., vol. 7, no. 1, pp. 59–65, 2019, doi: 10.31294/jki.v7i1.5744.
R. Azmatul Barro, I. D. Sulvianti, and M. Afendi, “Penerapan Synthetic Minority Oversampling Technique (Smote) Terhadap Data Tidak Seimbang Pada Pembuatan Model Komposisi Jamu,” Xplore J. Stat., vol. 1, no. 1, pp. 1–6, 2013.
F. F. Haranto and B. W. Sari, “Implementasi Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter Terhadap Pelayanan Telkom Dan Biznet,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 171–176, 2019, doi: 10.33480/pilar.v15i2.699.
S. W. U. Vitandy, A. A. Supianto, and F. A. Bachtiar, “Analisis Sentimen Evaluasi Kinerja Dosen menggunakan Term Frequency- Inverse Document Frequency dan Naïve Bayes Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 6, pp. 6080–6088, 2019, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5645
R. Kosasih and A. Alberto, “Analisis Sentimen Produk Permainan Menggunakan Metode TF-IDF Dan Algoritma K-Nearest Neighbor,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 6, no. 1, pp. 134–139, 2021.
M. Y. Ardiansyah, M. A. Fauzi, and S. Adinugroho, “Penerapan Term Frequency-Modified Inverse Document Frequency pada Analisis Sentimen Ulasan Barang menggunakan Metode Learning Vector Quantization,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 6, pp. 5592–5598, 2019, [Online]. Available: http://j-ptiik.ub.ac.id
M. I. Alfarizi, L. Syafaah, and M. Lestandy, “Emotional Text Classification Using TF-IDF (Term Frequency-Inverse Document Frequency) And LSTM (Long Short-Term Memory),” JUITA J. Inform., vol. 10, no. 2, p. 225, 2022, doi: 10.30595/juita.v10i2.13262.
E. B. S. Rayhan Rahmanda, “JURNAL RESTI Word2Vec on Sentiment Analysis with Synthetic Minority Oversampling,” J. RESTI, vol. 5, no. 2, pp. 599–605, 2022.
S. Sofyan and A. Prasetyo, “Penerapan Synthetic Minority Oversampling Technique (SMOTE) Terhadap Data Tidak Seimbang Pada Tingkat Pendapatan Pekerja Informal Di Provinsi D.I. Yogyakarta Tahun 2019,” in Seminar Nasional Official Statistics, 2021, pp. 868–877. doi: 10.34123/semnasoffstat.v2021i1.1081.
R. A. Barro, I. D. Sulvianti, and M. Afendi, “Penerapan Synthetic Minority Oversampling Technique (Smote) Terhadap Data Tidak Seimbang Pada Pembuatan Model Komposisi Jamu,” Xplore J. Stat., vol. 1, no. 1, pp. 1–6, 2013.
Y. E. Kurniawati, “Class Imbalanced Learning Menggunakan Algoritma Synthetic Minority Over-sampling Technique – Nominal (SMOTE-N) pada Dataset Tuberculosis Anak,” J. Buana Inform., vol. 10, no. 2, pp. 134–143, 2019, doi: 10.24002/jbi.v10i2.2441.
O. Heranova, “Synthetic Minority Oversampling Technique pada Averaged One Dependence Estimators untuk Klasifikasi Credit Scoring,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 443–450, 2019, doi: 10.29207/resti.v3i3.1275.
K. U. Syaliman, “Enhance the Accuracy of K-Nearest Neighbor ( K-Nn ) for Unbalanced Class Data Using Synthetic Minority Oversampling Technique ( Smote ) and Gain Ratio ( Gr ),” J. Infokum, vol. 10, no. 1, pp. 188–195, 2021.
M. W. Pertiwi, M. F. Adiwisastra, and D. Supriadi, “Analisa Komparasi Menggunakan 5 Metode Data Mining dalam Klasifikasi Persentase Wanita Sudah menikah di Usia 15-49 yang Memakai Alat KB (Keluarga Berencana),” J. Khatulistiwa Inform., vol. 7, no. 1, pp. 37–42, 2019, doi: 10.31294/jki.v7i1.5741.
D. N. Fitriana and Y. Sibaroni, “Sentiment Analysis on KAI Twitter Post Using Multiclass Support Vector Machine (SVM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 846–853, 2020, doi: 10.29207/resti.v4i5.2231.
A. Karim, “Perbandingan Prediksi Kemiskinan di Indonesia Menggunakan Support Vector Machine (SVM) dengan Regresi Linear,” J. Sains Mat. dan Stat., vol. 6, no. 1, pp. 107–112, 2020, doi: 10.24014/jsms.v6i1.9259.
E. A. Nida, “Analisis Kinerja Algoritma Support Vector Machine (SVM) Guna Pengambilan Keputusan Beli/Jual Pada Saham PT Elnusa Tbk. (ELSA),” J. Transform., vol. 17, no. 2, pp. 160–170, 2020, doi: 10.26623/transformatika.v17i2.1649.
N. L. W. S. R. Ginantra, C. P. Yanti, G. D. Prasetya, I. B. G. Sarasvandana, and I. K. A. G. Wiguna, “Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan k-NN,” Janapati, vol. 11, no. 3, pp. 205–216, 2022.
W. Suteja and S. Wahyuningsih, “Invensi Budaya Kuliner Melalui Komodifikasi Sebagai Penunjang Kegiatan Pariwisata Di Kawasan Wisata Mataram,” Media Bina Ilm., vol. 13, no. 7, pp. 1397–1404, 2018, [Online]. Available: http://ejurnal.binawakya.or.id/index.php/
K. Sinaga, M. A. Nasiution, A. Yasir, and A. Hasoloan, “Pemanfaatan Teknologi Informasi untuk Meningkatkan Pemasaran Wisata Kuliner Halal pada Era New Normal,” Reswara J. Pengabdi. Kpd. Masy., vol. 2, no. 2, pp. 205–211, 2021.
U. Khair, Suriati, and Dharmawati, “Pengenalan Teknologi Internet Berbasis Smartphone Untuk Wisata Kuliner Khas Melayu Bagi Ibu-Ibu Pengusaha Makanan Di Kecamatan Medan Labuhan,” J. Tunas, vol. 1, no. 1, pp. 45–49, 2019, doi: 10.30645/jtunas.v1i1.12.
I. A. Mastan and Y. Toni, “Menggunakan Metode Naive Bayes Classifier Sentiment Analysis Of Chicken Culinary Place From Visitor Comments Uing Naive Bayes Classifier Method,” J. Bus. Audit Inf. Syst., vol. 3, no. 1, pp. 42–50, 2020.
R. Asmara, A. Basuki, and M. U. H. Al Rasyid, “Analisis Sentimen Temporal Tentang Kuliner Di Kota Surabaya Berbasis Gender Menggunakan Bahasa Indonesia,” Technomedia J., vol. 5, no. 1, pp. 67–81, 2020, doi: 10.33050/tmj.v5i1.1260.
M. R. Fauzi, R. A. Pratama, P. Laksono, and P. Eosina, “Penerapan Big Data Menggunakan Algoritma Multi-Label K-Nearest Neighbor dalam Analisis Sentimen Konsumen UMKM Sektor Kuliner,” Krea-TIF J. Tek. Inform., vol. 9, no. 1, pp. 9–20, 2021, doi: 10.32832/kreatif.v9i1.3587.
H. J. Christanto and Y. A. Singgalen, “Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo,” J. Inf. Syst. Informatics, vol. 4, no. 3, pp. 511–523, 2022, doi: 10.51519/journalisi.v4i3.276.
N. Sari and A. P. Siregar, “Pengaruh Food Quality, Price, Service Quality dan Perceived Value terhadap Customer Loyality pada Restoran Aneka Rasa Jambi dengan Customer Satisfaction sebagai Variabel Intervening,” J-MAS J. Manaj. dan Sains, vol. 4, no. 2, pp. 368–374, 2019, doi: 10.33087/jmas.v4i2.121.
I. P. Trianata, “Upaya Supervisor dalam Meningkatkan Kualitas Pelayanan Pramusaji di Husk Restoran The Royal Beach Seminyak Bali,” J. Mhs. Pariwisata dan Bisnis, vol. 1, no. 8, pp. 2011–2033, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Konsumen terhadap Food, Services, and Value di Restoran dan Rumah Makan Populer Kota Makassar Berdasarkan Rekomendasi Tripadvisor Menggunakan Metode CRISP-DM dan SERVQUAL
Pages: 1899−1914
Copyright (c) 2023 Yerik Afrianto Singgalen
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).