Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier


  • Yerik Afrianto Singgalen * Mail Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Borobudur; Indonesia; Naive Bayes Classifier; TripAdvisor; Sentiment Analysis

Abstract

Sentiment analysis of visitors to the tourist destinations of Borobudur Temple in Indonesia needs to be done to determine the expected product and service preferences. In addition, sentiment analysis is also helpful for managers to adjust the needs of tourists to the infrastructure provided in the tourist destination area. The classification method used in the sentiment analysis is the Naïve Bayes Classifier (NBC) against 3850 visitor reviews at Borobudur Temple. Review data is pulled from Tripadvisor web pages filtered by language, review time, and travel characteristics to analyze foreign traveler preferences comprehensively. This research stage is divided into three parts: data preparation, data processing, sentiment analysis, and algorithm performance evaluation. In addition, SMOTE Upsampling is used to balance data. The results of implementing the Naïve Bayes Classifier (NBC) classification method obtained an accuracy value of 96.36%, a precision value of 93.23%, and a recall value of 100% with an Area Under Curve (AUC) value of 0.714. In addition, the results of ranking five famous words from the review data show that there are highlights of the physical condition of the temple, scenery, and tourist visit activities at Borobudur Temple, where the four most famous words in visitor reviews are the “temple,” “visit,” “Borobudur,” “sunrise” and “place.”

Downloads

Download data is not yet available.

References

A. R. Rinaldi, J. Damanik, and D. Mutiarin, “Analisis Netnografi Sentimen Pengguna Twitter Terhadap Pembukaan Kembali Pariwisata Di Tengah Pandemi Covid-19,” Pariwisata Budaya J. Ilm. Agama Dan Budaya, vol. 6, no. 1, pp. 27–36, 2021, doi: 10.25078/pba.v6i1.1982.

Y. A. Singgalen, “Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo,” J. Inf. Syst. Informatics, vol. 4, no. 3, pp. 511–523, 2022, doi: 10.51519/journalisi.v4i3.276.

Q. Jiang, C. S. Chan, S. Eichelberger, H. Ma, and B. Pikkemaat, “Sentiment analysis of online destination image of Hong Kong held by mainland Chinese tourists,” Curr. Issues Tour., vol. 24, no. 17, pp. 2501–2522, 2021, doi: 10.1080/13683500.2021.1874312.

K. Puh and M. B. Babac, “Predicting Sentiment and Rating of Tourist Reviews Using Machine Learning,” J. Hosp. Tour. Insights, 2022, doi: 10.1108/JHTI-02-2022-0078.

Y. Lu and Q. Zheng, “Twitter public sentiment dynamics on cruise tourism during the COVID-19 pandemic,” Curr. Issues Tour., vol. 24, no. 7, pp. 892–898, 2021, doi: 10.1080/13683500.2020.1843607.

J. Luo, S. Huang, and R. Wang, “A fine-grained sentiment analysis of online guest reviews of economy hotels in China,” J. Hosp. Mark. Manag., vol. 30, no. 1, pp. 71–95, 2021, doi: 10.1080/19368623.2020.1772163.

N. L. P. Merawati, A. Z. Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” Rekayasa Sist. dan Teknol. Inf., vol. 1, no. 10, pp. 123–131, 2021, doi: 10.29207/resti.v5i1.2587.

I. G. N. A. W. Putra and I. G. A. G. A. Kadyanan, “Optimization of Bali Tourism Recommendations Based on Personal Motivation of Tourists Using the Naive Bayes Algorithm,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 10, no. 1, p. 83, 2021, doi: 10.24843/jlk.2021.v10.i01.p11.

A. Ratnasari et al., “Penerapan sistem pendukung keputusan untuk pemilihan objek wisata di majalengka menggunakan algoritma naïve bayes,” vol. 9, pp. 54–59, 2019.

S. M. Salsabila, A. A. Murtopo, and N. Fadhilah, “Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Pada Angket Mahasiswa,” J. Minfo, vol. 11, no. 2, pp. 30–35, 2022.

Harliana and F. N. Putra, “Klasifikasi Tingkat Rumah Tangga Miskin Saat Pandemi Dengan Naïve Bayes Classifier,” J. Sains dan Inform., vol. 7, no. 2, pp. 165–173, 2021, doi: 10.34128/jsi.v7i2.339.

M. F. Ibrahim, M. A. Alhakeem, and N. A. Fadhil, “Evaluation of Naïve Bayes Classification in Arabic Short Text Classification,” Al-Mustansiriyah J. Sci., vol. 32, no. 4, pp. 42–50, 2021, doi: 10.23851/mjs.v32i4.994.

C. Banchhor and N. Srinivasu, “Analysis of Bayesian optimization algorithms for big data classification based on Map Reduce framework,” J. Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00464-4.

P. S. Dewi, C. K. Sastradipraja, and D. Gustian, “Sistem Pendukung Keputusan Kenaikan Jabatan Menggunakan Metode Algoritma Naïve Bayes Classifier,” J. Teknol. dan Inf., vol. 11, no. 1, pp. 66–80, 2021, doi: 10.34010/jati.v11i1.3593.

M. Ismail, N. Hassan, and S. S. Bafjaish, “Comparative Analysis of Naive Bayesian Techniques in Health-Related for Classification Task,” J. Soft Comput. Data Min., vol. 1, no. 2, pp. 1–10, 2020, [Online]. Available: https://www.researchgate.net/publication/352312714_Comparative_Analysis_of_Naive_Bayesian_Techniques_in_Health-Related_for_Classification_Task

V. A. Permadi, “Analisis Sentimen Menggunakan Algoritma Naive Bayes Terhadap Review Restoran di Singapura,” J. Buana Inform., vol. 11, no. 2, pp. 141–151, 2020, doi: 10.24002/jbi.v11i2.3769.

I. E. Tiffani, “Optimization of Naïve Bayes Classifier By Implemented Unigram, Bigram, Trigram for Sentiment Analysis of Hotel Review,” Joscex, vol. 1, no. 1, pp. 1–7, 2020.

A. Firmansyah and Eriswandi, “Analisis Sentimen Terhadap Operator Seluler Telkomsel Menggunakan Algoritma Naive Bayes,” SIGMA – J. Teknol. Pelita Bangsa, vol. 10, no. 4, pp. 108–116, 2020.

L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” Ilk. J. Ilm., vol. 12, no. 2, pp. 154–161, 2020, doi: 10.33096/ilkom.v12i2.597.154-161.

M. Godovykh, J. Ridderstaat, C. Baker, and A. Fyall, “COVID-19 and Tourism: Analyzing the Effects of COVID-19 Statistics and Media Coverage on Attitudes toward Tourism,” Forecasting, vol. 3, no. 4, pp. 870–883, 2021, doi: 10.3390/forecast3040053.

A. R. Alaei, S. Becken, and B. Stantic, “Sentiment Analysis in Tourism: Capitalizing on Big Data,” J. Travel Res., vol. 58, no. 2, pp. 175–191, 2019, doi: 10.1177/0047287517747753.

S. Wei and S. Song, “Sentiment Classification of Tourism Reviews Based on Visual and Textual Multifeature Fusion,” Wirel. Commun. Mob. Comput., vol. 2022, no. 1, pp. 1–10, 2022, doi: 10.1155/2022/9940817.

F. Nurhuda, S. W. Sihwi, and A. Doewes, “Analisis Sentimen Masyarakat Terhadap Pilpres 2019 Berdasarkan Opini Dari Twitter Menggunakan Metode Naive Bayes Classifier,” J. ITSMART, vol. 2, no. 2, pp. 35–42, 2013, doi: 10.51519/journalcisa.v1i3.45.

C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.

Y. A. Singgalen, “Analisis Sentimen dan Pemodelan Topik dalam Optimalisasi Pemasaran Destinasi Pariwisata Prioritas di Indonesia,” J. Inf. Syst. Informatics, vol. 4, no. 1, pp. 459–470, 2021, [Online]. Available: http://journal-isi.org/index.php/isi/article/view/171

F. F. Mailo and L. Lazuardi, “Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia,” J. Inf. Syst. Public Heal., vol. 4, no. 1, pp. 28–36, 2019, doi: https://doi.org/10.22146/jisph.44455.

N. Legiawati, T. I. Hermanto, and Y. R. Ramadhan, “Analisis Sentimen Opini Pengguna Twitter Terhadap Perusahaan Jasa Ekspedisi Menggunakan Algoritma Naïve Bayes Berbasis PSO,” J. Ris. Komput., vol. 9, no. 4, pp. 930–937, 2022, doi: 10.30865/jurikom.v9i4.4629.

F. Zamachsari, G. Vangeran Saragih, Susafa’ati, and W. Gata, “Analisis Sentimen Pemindahan Ibu Kota Negara dengan Feature Selection Algoritma Naive Bayes dan Support Vector Machine,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 3, pp. 504–512, 2017, doi: 10.29207/resti.v4i3.1942.

A. Andreyestha and Q. N. Azizah, “Analisa Sentimen Kicauan Twitter Tokopedia Dengan Optimalisasi Data Tidak Seimbang Menggunakan Algoritma SMOTE,” Infotek J. Inform. dan Teknol., vol. 5, no. 1, pp. 108–116, 2022, doi: 10.29408/jit.v5i1.4581.

Y. A. Singgalen, “Vegetation Index and Mangrove Forest Utilization through Ecotourism Development in Dodola and Guraping of North Maluku Province,” J. Manaj. Hutan Trop., vol. 28, no. 2, pp. 150–161, 2022, doi: 10.7226/jtfm.28.2.150.

Y. A. Singgalen, “Tourism Infrastructure Development and Transformation of Vegetation Index in Dodola Island of Morotai Island Regency,” J. Inf. Syst. Informatics, vol. 4, no. 1, pp. 130–144, 2022.

Y. A. Singgalen and D. Manongga, “Monitoring of Mangorve Ecotourism Area using NDVI, NDWI, and CMRI in Dodola Island, Morotai Island Regency, Indonesia,” J. Ilmu dan Teknol. Kelaut. Trop., vol. 14, no. 1, pp. 95–108, 2022.

Y. A. Singgalen and D. Manongga, “Mangrove-based Ecotourism Sustainability Analysis using NDVI and AHP Approach,” Indones. J. Comput. Cybern. Syst., vol. 16, no. 2, pp. 125–136, 2022, doi: 10.22146/ijccs.68986.

Y. A. Singgalen, “Priority Analysis of Mangrove Guraping Ecotourism Development Based on Spatial Data Using Process Hierarchy Analysis,” J. Inf. Syst. Informatics, vol. 4, no. 1, pp. 1–15, 2022.

Y. A. Singgalen, “Strategic Planning of Ecotourism Management System Using Ward and Peppard Framework,” J. Inf. Syst. Informatics, vol. 4, no. 2, pp. 216–232, 2022, doi: https://doi.org/10.51519/journalisi.v4i2.245.

H. Prasadja and Y. A. Singgalen, “Analysis and Design of Mangrove Ecotourism Management System ( SIMANGROVE ) of Dodola Island , Morotai Island Regency , Indonesia,” J. Inf. Syst. Informatics, vol. 4, no. 2, pp. 191–204, 2022, doi: https://doi.org/10.51519/journalisi.v4i2.243.

E. Widodo and Y. A. Singgalen, “Strategic Planning of Regional Tourism Information System of Morotai Island Regency using Ward and Peppard Framework,” J. Inf. Syst. Informatics, vol. 4, no. 3, pp. 556–573, 2022, doi: 10.51519/journalisi.v4i3.282.

A. R. Kadafi, “Perbandingan Algoritma Klasifikasi Untuk Penjurusan Siswa SMA,” J. ELTIKOM, vol. 2, no. 2, pp. 67–77, 2018, doi: 10.31961/eltikom.v2i2.86.

B. S. Prakoso, D. Rosiyadi, H. S. Utama, and D. Aridarma, “Klasifikasi Berita Menggunakan Algoritma Naive Bayes Classifer Dengan Seleksi Fitur Dan Boosting,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 227–232, 2019, doi: 10.29207/resti.v3i2.1042.

R. Fatmasari, V. M. Ayu, B. Pratama, and W. Gata, “Analisis Sentimen Dalam Pengkategorian Komentar Youtube Terhadap Layanan Akademik dan Non-Akademik Universitas Terbuka Untuk Prediksi Kepuasan,” Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 395–404, 2022, doi: 10.47065/bits.v4i2.1738.

W. Hadi and H. Widyaningsih, “Implementasi Penerapan Sapta Pesona Wisata Terhadap Kunjungan Wisatawan Di Desa Sambirejo Kecamatan Prambanan Kabupaten Sleman Daerah Istimewa Yogyakarta Wisnu,” Khasanah Ilmu J. Pariwisata Dan Budaya, vol. 11, no. 2, pp. 127–136, 2020, doi: 10.31294/khi.v11i2.8862.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier

Dimensions Badge
Article History
Submitted: 2022-11-04
Published: 2022-12-26
Abstract View: 1262 times
PDF Download: 1102 times
How to Cite
Singgalen, Y. (2022). Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier. Building of Informatics, Technology and Science (BITS), 4(3), 1343−1352. https://doi.org/10.47065/bits.v4i3.2486
Issue
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>