Analisis Sentimen Masyarakat Indonesia Terhadap Dampak Penurunan Global Sebagai Akibat Resesi di Twitter
Abstract
A recession is a significant reduction in economic activity and is spread across the economy at its greatest for more than a few months, but it can also be seen in Real GDP, Real Income, Employment, Industrial Production, and Wholesale-Retail Sales. Recently, there has been a lot of public opinion regarding the recession that will occur in 2023, especially in Indonesia, on various social media such as Twitter. Based on these problems, sentiment analysis was carried out on tweets to obtain information on the positive or negative polarity of these opinions using the Naive Bayes and Support Vector Machine (SVM) methods to choose a more effective way in case studies to determine sentiment predictions. The steps are taken consist of data collection, processing data, weighting data, classification process, evaluation, validation, and results and discussion. The web scraping technique was used, and after going through the data cleaning stages, a total of 780 tweet data was obtained. The results of the classification test show that the SVM method has a greater accuracy rate with a proportion of 79.5% compared to the Naive Bayes method with a proportion of 72.5%. The SVM method's prediction results also show several 144 positive and 636 negative sentiments. Judging from the Wordcloud that was formed, it can be assumed that people are worried about their economic conditions, one of which is the unstable oil price which can trigger a recession.
Downloads
References
A. S. Zahra, N. Murialti and M. F. Hadi, "Analisis Pengaruh Resesi Ekonomi di Provinsi Riau Tahun 2006-2020," Economics, Accounting and Business Journal, vol. 2, no. 1, pp. 141-150, 2022.
B. H. Miraza, "Seputar Resesi dan Depresi," Jurnal Ekonomi KIAT, vol. 30, no. 2, pp. 11-13, 2019.
H. J. Christanto, "Game Theory Analysis on Marketing Strategy Determination of KAI Access and Traveloka based on Usability of HCI (Human-Computer Interaction)," Journal of Information Systems and Informatics, vol. 4, no. 3, pp. 665-672, 2022.
S. Azeharie and O. Kusuma, "Analisis Penggunaan Twitter Sebagai Media Komunikasi Selebritis di Jakarta," Jurnal Komunikasi Universitas Tarumanagara, vol. 6, no. 2, pp. 83-98, 2014.
M. Ahlgren, "55+ STATISTIK TWITTER, FAKTA & TREN UNTUK 2023," 2023. Website: https://www.websiterating.com/id/research/twitter-statistics/. [Diakses 12 Januari 2023].
T. T. Widowati and M. Sadikin, "Analisa Sentimen Twitter Terhadap Tokoh Publik Dengan Algoritma Naive Bayes dan Support Vector Machine," Jurnal Teknik Industri, Mesin, Elektro dan Ilmu Komputer, vol. 11, no. 2, pp. 626-636, 2020.
B. Laurensz and E. Sediyono, "Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19," Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 10, no. 2, pp. 118-123, 2021.
H. Setiawan, E. Utami and Sudarmawan, "Analisis Sentimen Twitter Kuliah Online Pasca Covid-19Menggunakan Algoritma Support Vector Machine dan Naive Bayes," Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 1, pp. 43-51, 2021.
F. V. Sari and A. Wibowo, "Analisis Sentimen Pelanggan Toko Online JD.ID Menggunakan Metode Naive Bayes Classifier Berbasis Konversi Ikon Emosi," Jurnal Teknik Industri, Mesin, Elektro dan Ilmu Komputer, vol. 10, no. 2, pp. 681-686, 2019.
V. K. S. Que, A. Iriani and H. D. Purnomo, "Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization," Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 9, no. 2, pp. 162-170, 2020.
D. Ikasari, Y. Fajarwati and Widiastuti, "Analisis Sentimen dan Klasifikasi Tweets Berbahasa Indonesia Terhadap Transportasi Umum MRT Jakarta Menggunakan Naive Bayes Classifier," Jurnal Ilmiah Informatika Komputer, vol. 25, no. 1, pp. 64-75, 2020.
H. J. Christanto and Y. A. Singgalen, "Sentiment Analysis of Customer Feedback Reviews Towards Hotel’s Products and Services in Labuan Bajo," Journal of Information Systems and Informatics, vol. 4, no. 4, pp. 805-822, 2022.
A. Firdaus and W. I. Firdaus, "Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan," Jurnal Penelitian Ilmu dan Teknologi Komputer, vol. 13, no. 1, pp. 66-78, 2021.
E. K. Putri and T. Setiadi, "Penerapan Text Mining Pada Sistem Klasifikasi Email Spam Menggunakan Naive Bayes," Jurnal Sarjana Teknik Informatika, vol. 2, no. 3, pp. 73-83, 2014.
H. Susana, N. Suarna, Fathurrohman and Kaslani, "Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet," Jurnal Sistem Informasi dan Teknologi Informasi, vol. 4, no. 1, pp. 1-8, 2022.
A. F. Watratan, A. Puspita and D. Moeis, "Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia," Journal of Applied Computer Science and Technology, vol. 1, no. 1, pp. 7-14, 2020.
S. Hikmawan, A. Pardamean and S. N. Khasanah, "Sentimen Analisis Publik Terhadap Joko Widodo Terhadap Wabah Covid-19 Menggunakan Metode Machine Learning," Jurnal Kajian Ilmiah, vol. 20, no. 2, pp. 167-176, 2020.
I. M. Parapat, M. T. Furqon and Sutrisno, "Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, pp. 3163-3169, 2018.
H. Tuhuteru and A. Iriani, "Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier," Jurnal Informatika: Jurnal Pengembangan IT, vol. 3, no. 3, pp. 394-401, 2018.
H. Irsyad, A. Farisi and M. R. Pribadi, "Klasifikasi Opini Masyarakat Terhadap Jasa ISP MyRepublic dengan Naive Bayes," Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 8, no. 1, pp. 30-34, 2019.
Herianto, "Penerapan Text-Mining untuk Mengidentifikasi Pengguna Twitter Terhadap Fenomena Peran DPR RI," Jurnal Sains & Teknologi, vol. 8, no. 2, pp. 36-44, 2018.
M. A. Rofiqi, A. C. Fauzan, A. P. Agustin, A. Agun and H. Di, "Implementasi Term-Frequency Inverse Document Frequency (TF-IDF) untuk Mencari Relevansi Dokumen Berdasarkan Query," Journal of Computer Science and Applied Informatics, vol. 1, no. 2, pp. 58-64, 2019.
Andreyestha, "Analisis Sentimen Masyarakat Terhadap Fenomena Teroris Melalui Twitter di Indonesia," Jurnal Kajian Ilmiah, vol. 19, no. 3, pp. 239-247, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Masyarakat Indonesia Terhadap Dampak Penurunan Global Sebagai Akibat Resesi di Twitter
Pages: 1959−1966
Copyright (c) 2023 Stephen Aprius Sutresno

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















