Implementasi K-Means Clustering Berbasis RapidMiner untuk Optimalisasi Segmentasi Penjualan Produk dalam Meningkatkan Efektivitas Strategi Pemasaran
Abstract
The Indonesian electronic retail industry is experiencing rapid growth along with digital transformation. However, available sales data is often only stored as transaction records without further analysis, so it has not been optimally utilized for marketing decision making or customer segmentation. This study aims to implement the RapidMiner-based K-Means Clustering algorithm to analyze segmentation patterns of electronic products at XYZ Store. The dataset used includes the variables Transaction_ID, Product_ID, Product_Name, Category, Quantity, Unit_Price, Revenue, and Recency. The research stages include data collection, preprocessing (filtering, aggregation, and Z-Score normalization), K-Means application, and interpretation of clustering results. Determination of the number of clusters in this study uses the Elbow Method, which shows an optimal point at K = 3, so that number of clusters is chosen for the data grouping process. Based on the results of the application of the K-Means algorithm with the three clusters, the following are obtained: (1) Cluster 0 (High Sales & High Revenue) consisting of Smartphones, Laptops, and Tablets as superior products with a contribution of almost 60% of total revenue; (2) Cluster 1 (Medium Sales & Moderate Revenue) includes Televisions, Refrigerators, and Smartwatches with a stable contribution of around 27%; and (3) Cluster 2 (Low Sales & Low Revenue) contains Washing Machines, Speakers, Headphones, and Printers with a low contribution of only 14%. These findings provide a strategic basis for management in making business decisions, such as procurement priorities, seasonal promotions, product bundling, and clearance strategies. This study proves that the application of data mining with K-Means Clustering is effective in increasing operational efficiency and supporting the competitiveness of the electronics retail business in Indonesia.
Downloads
References
I. Shantilawati, S. Zebua, and R. Tarmizi, “Penggunaan Digital Marketing Dalam Meningkatkan Penjualan Bisnis Retail,” JMARI, vol. 5, no. 1, pp. 30–37, Feb. 2024, doi: 10.33050/jmari.v5i1.3130.
F. M. Alexander, A. Sasmitapura, M. Michael, and M. Meythi, “Faktor Finansial dan Nilai Perusahaan Ritel Indonesia,” Jurnal Akuntansi Kontemporer, vol. 15, no. 3, pp. 155–169, 2023, doi: 10.33508/jako.v15i3.4741.
N. Qomariah, “The Role of Promotion and Service Quality in Increasing Consumer Satisfaction and Loyalty in Pawnshops,” Journal of Economics, Finance And Management Studies, vol. 04, no. 10, Oct. 2021, doi: 10.47191/jefms/v4-i10-17.
M. I. Faidah and Z. Fatah, “Clustering K-Means Dengan Rapidminer Untuk Identifikasi Produk Terlaris,” JUSIFOR : Jurnal Sistem Informasi dan Informatika, vol. 4, no. 1, pp. 25–33, Jun. 2025, doi: 10.70609/jusifor.v4i1.5821.
S. N. Lathifah and Z. F. Azzahra, “AI-Driven Customers Segmentation Using K-Means Clustering,” G-Tech: Jurnal Teknologi Terapan, vol. 9, no. 1, pp. 320–329, Jan. 2025, doi: 10.70609/gtech.v9i1.6202.
M. Miranda and S. Sriani, “Implementation of K-Means Clustering in Grouping Sales Data at Zura Mart,” Journal of Applied Informatics and Computing, vol. 9, no. 2, pp. 547–555, Apr. 2025, doi: 10.30871/jaic.v9i2.9160.
L. Fernando and M. I. Fianty, “Optimizing Motorcycle Sales: Enhancing Customer Segmentation with K-Means Clustering and Data Mining Techniques,” Journal of Information Systems and Informatics, vol. 6, no. 3, pp. 1484–1498, Sep. 2024, doi: 10.51519/journalisi.v6i3.799.
B. I. Nugroho, A. Rafhina, P. S. Ananda, and G. Gunawan, “Customer segmentation in sales transaction data using k-means clustering algorithm,” Journal of Intelligent Decision Support System (IDSS), vol. 7, no. 2, pp. 130–136, Jun. 2024, doi: 10.35335/idss.v7i2.236.
A. Nugraha, Y. Amelia Effendi, N. Nicholas, Z. Tao, M. Afifuddin, and N. Nuzulita, “K-Means clustering interpretation using recency, frequency, and monetary factor for retail customers segmentation,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 23, no. 2, p. 435, Apr. 2025, doi: 10.12928/telkomnika.v23i2.26044.
M. I. Faidah and Z. Fatah, “Clustering K-Means Dengan Rapidminer Untuk Identifikasi Produk Terlaris,” JUSIFOR : Jurnal Sistem Informasi dan Informatika, vol. 4, no. 1, pp. 25–33, Jun. 2025, doi: 10.70609/jusifor.v4i1.5821.
M. Rafi Nahjan, Nono Heryana, and Apriade Voutama, “Implementasi Rapidminer dengan Metode Clustering K-Means untuk Analisa Penjualan Pada Toko OJ Cell,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 101–104, Jan. 2023, doi: 10.36040/jati.v7i1.6094.
Moehammad Nasri Abdoel Wahid, Sudarjo, Friyato, and R. H. Tirtosetianto, “Analisis Klaster Usaha Mikro Kecil di Jawa Timur Menggunakan Metode Agglomerative Clustering dengan Software Orange Data Mining,” Akademika, vol. 22, no. 1, pp. 15–21, Feb. 2024, doi: 10.51881/jak.v22i1.125.
A. Nur Rahmi and Yosaphat Ananda Mikola, “Implementasi Algoritma Apriori untuk Menentukan Pola Pembelian pada Customer (Studi Kasus : Toko Bakoel Sembako),” Information System Journal, vol. 4, no. 1, pp. 14–19, May 2021, doi: 10.24076/infosjournal.2021v4i1.561.
H. Mawarni, G. Testiana, and M. L. Dalafranka, “Implementasi Algoritma K-Means untuk Segmentasi Pelanggan Pada PT. Bintang Multi Sarana Cabang Tugumulyo,” Jurnal Komputer dan Informatika, vol. 11, no. 2, pp. 227–236, Oct. 2023, doi: 10.35508/jicon.v11i2.12478.
R. Siagian, P. Sirait, and A. Halim, “The Implementation of K-Means dan K-Medoids Algorithm for Customer Segmentation on E-commerce Data Transactions,” SISTEMASI, vol. 11, no. 2, p. 260, May 2022, doi: 10.32520/stmsi.v11i2.1337.
J. M. John, O. Shobayo, and B. Ogunleye, “An Exploration of Clustering Algorithms for Customer Segmentation in the UK Retail Market,” Analytics, vol. 2, no. 4, pp. 809–823, Oct. 2023, doi: 10.3390/analytics2040042.
M. I. Faidah and Z. Fatah, “Clustering K-Means Dengan Rapidminer Untuk Identifikasi Produk Terlaris,” JUSIFOR : Jurnal Sistem Informasi dan Informatika, vol. 4, no. 1, pp. 25–33, Jun. 2025, doi: 10.70609/jusifor.v4i1.5821.
N. Dwitiyanti, Siti Ayu Kumala, and Shinta Dwi Handayani, “Comparative Study of Earthquake Clustering in Indonesia Using K-Medoids, K-Means, DBSCAN, Fuzzy C-Means and K-AP Algorithms,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 6, pp. 768–778, Dec. 2024, doi: 10.29207/resti.v8i6.5514.
A. Yahya and R. Kurniawan, “Implementasi Algoritma K-Means untuk Pengelompokan Data Penjualan Berdasarkan Pola Penjualan,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 1, pp. 350–358, Jan. 2025, doi: 10.57152/malcom.v5i1.1773.
Mifta Almaripat, Ahmad Faqih, and Ade Rizki Rinaldy, “Sales Data Classterization Analysis Using K-Means Method for Marketing Strategy Development,” Journal of Artificial Intelligence and Engineering Applications (JAIEA), vol. 4, no. 2, pp. 972–976, Feb. 2025, doi: 10.59934/jaiea.v4i2.792.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi K-Means Clustering Berbasis RapidMiner untuk Optimalisasi Segmentasi Penjualan Produk dalam Meningkatkan Efektivitas Strategi Pemasaran
Pages: 200-210
Copyright (c) 2025 Sufajar Butsianto, Arif Siswandi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















