Analisis Sentimen dan Pemodelan Topik Terhadap Ulasan Aplikasi Mobile JKN Menggunakan SVM dan LDA


  • Nursanti Novi Arisa Institut Teknologi Kalimantan, Balikpapan, Indonesia
  • Kevin Himawan Institut Teknologi Kalimantan, Balikpapan, Indonesia
  • (*) Corresponding Author
Keywords: Digital Healthcare Services; Latent Dirichlet Allocation (LDA); Mobile JKN; Sentiment Analysis; Support Vector Machine (SVM)

Abstract

In 2024, the number of internet users in Indonesia reached 221.56 million, accounting for 79.5% of the population an increase of 1.4% from the previous year (APJII). This growth has driven digital transformation in various sectors, including healthcare. To support this, the government launched the Mobile JKN app as part of the digitalization of the National Health Insurance (JKN) program, aimed at expanding access to services, especially in remote areas. Despite over 50 million downloads, the app still faces technical issues such as difficulties with registration, verification, and frequent updates that disrupt user experience. This study analyzes user complaints using sentiment analysis with the Support Vector Machine (SVM) algorithm and topic modeling via Latent Dirichlet Allocation (LDA). A total of 285,661 reviews from the Google Play Store (June 2016–December 2024) were collected and pre-processed. Of these, 181,657 reviews were analyzed—80% used for training (145,615) and 20% for testing (36,042). The SVM model showed strong performance, achieving 90% accuracy, 90% precision, 89% recall, and an F1-score of 89%. It classified 12,965 reviews as positive and 23,077 as negative. Topic modeling of negative reviews revealed five key themes with a coherence score of 0.5064: app usage, login and registration, data verification, online services and data changes, and app updates. Further analysis of version 4.12.0 informed improvement recommendations, particularly regarding phone number verification, login, and facial recognition issues.

Downloads

Download data is not yet available.

References

“APJII Jumlah Pengguna Internet Indonesia Tembus 221 Juta Orang,” ASOSIASI PENYELENGGARA JASA INTERNET INDONESIA, 2024. [Daring]. Tersedia pada: https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia- tembus-221-juta-orang

P. P. Indonesia, Peraturan Presiden (Perpres) Nomor 59 Tahun 2024 tentang Perubahan Ketiga atas Peraturan Presiden Nomor 82 Tahun 2018 tentang Jaminan Kesehatan, vol. 82. 2024. [Daring]. Tersedia pada: https://peraturan.bpk.go.id/Details/285181/perpres-no-59-tahun-2024

B. Liu, “Sentiment Analysis and Opinion Mining,” Morgan & Claypool Publisher, 2019.

S. Karmila dan V. I. Ardianti, “Metode Latent Dirichlet Allocation Untuk Menentukan Topik Teks Suatu Berita,” jiki, vol. 16, no. 01, hlm. 36–44, Nov 2022, doi: 10.56956/jiki.v16i01.100.

I. Siti Aisah, B. Irawan, dan T. Suprapti, “Algoritma Support Vector Machine (Svm) Untuk Analisis Sentimen Ulasan Aplikasi Al Qur’an Digital,” jati, vol. 7, no. 6, hlm. 3759–3765, Feb 2024, doi: 10.36040/jati.v7i6.8263.

R. Zulfiqri, B. N. Sari, dan T. N. Padilah, “ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI MEDIA SOSIAL INSTAGRAM PADA SITUS GOOGLE PLAY STORE MENGGUNAKAN NAÏVE BAYES CLASSIFIER,” JITET, vol. 12, no. 3, Agu 2024, doi: 10.23960/jitet.v12i3.4995.

J. W. Fernanda, “PEMODELAN PERSEPSI PEMBELAJARAN ONLINE MENGGUNAKAN LATENT DIRICHLET ALLOCATION,” Jurnal Statistika Universitas Muhammadiyah Semarang, vol. 9, no. 2, hlm. 79, Des 2021, doi: 10.26714/jsunimus.9.2.2021.79-85.

M. D. Hendriyanto, A. A. Ridha, dan U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS, vol. 5, no. 1, hlm. 1–7, Apr 2022, doi: 10.31539/intecoms.v5i1.3708.

L. B. Ilmawan dan M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” Ilk. J. Ilm., vol. 12, no. 2, hlm. 154–161, Agu 2020, doi: 10.33096/ilkom.v12i2.597.154-161.

M. R. Fahlevvi, “ANALISIS SENTIMEN TERHADAP ULASAN APLIKASI PEJABAT PENGELOLA INFORMASI DAN DOKUMENTASI KEMENTERIAN DALAM NEGERI REPUBLIK INDONESIA DI GOOGLE PLAYSTORE MENGGUNAKAN METODE SUPPORT VECTOR MACHINE,” JTKP, vol. 4, no. 1, hlm. 1–13, Jun 2022, doi: 10.33701/jtkp.v4i1.2701.

D. Nurwahidah, G. Dwilestari, dan N. D. Nuris, “ANALISIS SENTIMEN DATA ULASAN PENGGUNA APLIKASI GOOGLE KELAS PADA GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NAÏVE BAYES,” vol. 7, no. 6, 2023.

Y. Kustiyahningsih dan Y. Permana, “Penggunaan Latent Dirichlet Allocation (LDA) dan Support-Vector Machine (SVM) Untuk Menganalisis Sentimen Berdasarkan Aspek Dalam Ulasan Aplikasi EdLink,” teknika, vol. 13, no. 1, hlm. 127–136, Mar 2024, doi: 10.34148/teknika.v13i1.746.

R. A. Anggraini, G. Widagdo, A. S. Budi, dan M. Qomaruddin, “Penerapan Data Mining Classification untuk Data Blogger Menggunakan Metode Naïve Bayes,” justin, vol. 7, no. 1, hlm. 47, Jan 2019, doi: 10.26418/justin.v7i1.30211.

R. Maulana, A. Voutama, dan T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” j. teknologi terpadu, vol. 9, no. 1, hlm. 42–48, Jul 2023, doi: 10.54914/jtt.v9i1.609.

F. N. Hikmah, S. Basuki, dan Y. Azhar, “Deteksi Topik Tentang Tokoh Publik Politik Menggunakan Latent Dirichlet Allocation (LDA),” JR, vol. 2, no. 4, Jan 2024, doi: 10.22219/repositor.v2i4.30515.

K. C. Khee, “Unlock Reliable OTP Delivery: Best Practices for Seamless Security.” [Daring]. Tersedia pada: https://cpaas.8x8.com/en/blog/unlock-reliable-otp-delivery/

Interaction Design Foundation, “What is User Centered Design (UCD)?,” 2016, [Daring]. Tersedia pada: https://www.interaction-design.org/literature/topics/user-centered- design?srsltid=AfmBOopvqVN_GsbrRqPB74na5vFTziYmx1bQbrMq-vMok9wnp64Wb4VU

Coditation, “Regression testing: Types, Test Cases, Advantages & Disadvantages.” [Daring]. Tersedia pada: https://www.linkedin.com/pulse/regression-testing-types-test-cases-advantages-disadvantages/

“Active and Passive Liveness Detection, Apa Beda Keduanya?” [Daring]. Tersedia pada: https://verihubs.com/blog/passive-liveness-detection

“What is Video KYC (VKYC)? – All you Need to Know.” [Daring]. Tersedia pada: https://www.kychub.com/blog/what- is-video-kyc/


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen dan Pemodelan Topik Terhadap Ulasan Aplikasi Mobile JKN Menggunakan SVM dan LDA

Dimensions Badge
Article History
Submitted: 2025-07-17
Published: 2025-10-31
Abstract View: 13 times
PDF Download: 12 times
How to Cite
Arisa, N., & Himawan, K. (2025). Analisis Sentimen dan Pemodelan Topik Terhadap Ulasan Aplikasi Mobile JKN Menggunakan SVM dan LDA. Journal of Information System Research (JOSH), 7(1), 211-221. https://doi.org/10.47065/josh.v7i1.8029
Section
Articles