Klasifikasi Jenis Tanaman Fast Growing Species Menggunakan Algoritma Radial Basis Function Berdasarkan Citra Daun
Abstract
Indonesia has vast forests, even ranked as the third largest forest in the world. However, currently many forest areas have been deforested or the phenomenon of losing tree cover and forest areas. Forest rehabilitation programs develop by prioritizing plant or tree species that have fast growth or are called fast growing species. However, many people do not know about these fast growing species. Even though knowledge about the types of fast growing plant species is very important for the community to have so that the community can find out which plants can accelerate forest rehabilitation. Fast growing species of plants can actually be identified from the shape of the leaves. This study aims to build a classification model for fast growing species plant images based on leaf images by applying the Radial Basis Function (RBF) artificial neural network algorithm with morphological feature extraction. Morphological feature extraction is used to identify the shape of an object in order to obtain feature values based on predetermined parameters. These features then become input for the RBF artificial neural network to obtain learning patterns. The RBF network has three layers that are feedforward so that it can support solving classification or pattern recognition problems. Based on the results of accuracy testing, an accuracy value of 87.50% was obtained. This means that the Radial Basis Function (RBF) neural network is able to classify fast growing plant species based on leaf images.
Downloads
References
M. S. Chair and M. F. Fahmi, “Penjaga Biodiversitas Tropis Indonesia, KHDTK Litbang Kebun Raya,” Badan Standardisasi Instrumen Lingkungan Hidup dan Kehutanan (BSILHK), 2022. https://bsilhk.menlhk.go.id/index.php/2022/10/28/penjaga-biodiversitas-tropis-indonesia-khdtk-litbang-kebun-raya/
J. Supriatna, Pengelolaan Lingkungan Berkelanjutan. Jakarta: Yayasan Pustaka Obor Indonesia, 2021. [Online]. Available: https://books.google.co.id/books?id=_p4lEAAAQBAJ
P. D. Susetyo, “Jenis Pohon yang Tepat untuk Rehabilitasi Hutan,” Forest Digest, 2022. https://www.forestdigest.com/detail/1852/jenis-pohon-rehabilitasi-hutan
M. N. Ulil, Go Green : Lestari Kehidupan (Sehatkan Kehidupan Dengan Penghijauan). Banten: Anagraf Indonesia, 2022. [Online]. Available: https://books.google.co.id/books?id=R_eUEAAAQBAJ
A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, pp. 388–395, 2022, doi: 10.30865/jurikom.v9i1.3846.
Z. Abidin, R. I. Borman, F. B. Ananda, P. Prasetyawan, F. Rossi, and Y. Jusman, “Classification of Indonesian Traditional Snacks Based on Image Using Convolutional Neural Network (CNN) Algorithm,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022, pp. 18–23.
R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, “Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants,” in ICOMITEE 2021, 2021, pp. 46–50.
D. A. Anggoro and P. I. Rahmatullah, “The Implementation of Subspace Outlier Detection in K-Nearest Neighbors to Improve Accuracy in Bank Marketing Data,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 2, pp. 545–550, 2020.
A. R. T. H. Ririd, A. W. Kurniawati, and Y. Yunhasnawa, “Implementasi Metode Support Vector Machine Untuk Indentifikasi Penyakit Daun Tanaman Kubis,” J. Inform. Polinema, vol. 4, no. 3, p. 181, 2018, doi: 10.33795/jip.v4i3.204.
I. Istiadi and A. Y. Rahman, “Optimisasi Parameter Support Vector Machine Berbasis Algoritma Genetika pada Klasifikasi Teks Pengaduan Masyarakat,” in Conference on Innovation and Application of Science and Technology, 2020, pp. 481–488. [Online]. Available: http://www.publishing-widyagama.ac.id/ejournal-v2/index.php/ciastech/article/view/1904
K. Saputra S and M. I. Perangin-Angin, “Klasifikasi Tanaman Obat Berdasarkan Ekstraksi Fitur Morfologi Daun Menggunakan Jaringan Syaraf Tiruan,” J. Inform., vol. 5, no. 2, pp. 169–174, 2018, doi: 10.31311/ji.v5i2.3770.
Z. Azmi, “Artificial Neural Network Model For Wind Mill,” Int. J. Eng. Sci. InformationTechnology, vol. 1, no. 3, pp. 40–48, 2021.
F. Izhari, M. Zarlis, and S. Sutarman, “Analysis of backpropagation neural neural network algorithm on student ability based cognitive aspects,” in 3rd NICTE, 2020. doi: 10.1088/1757-899X/725/1/012103.
R. I. Borman, I. Ahmad, and Y. Rahmanto, “Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function,” Bull. Informatics Data Sci., vol. 1, no. 1, pp. 6–13, 2022.
I. Makki et al., “RBF Neural Network For Landmine Detection In Hyperspectral Imaging,” in 7th European Workshop on Visual Information Processing (EUVIP), 2018, pp. 26–28.
R. I. Borman, F. Rossi, D. Alamsyah, R. Nuraini, and Y. Jusman, “Classification of Medicinal Wild Plants Using Radial Basis Function Neural Network with Least Mean Square,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022.
F. Thaib, G. V. Nivaan, G. Tomasila, and A. J. Santoso, “Radial Basis Function Neural Network in Identifying The Types of Mangoes,” in 8th International Conference on Information and Communication Technology (ICoICT), 2020.
S. S. Chouhan, A. Kaul, and U. P. Singh, “Radial Basis Function Neural Network for the Segmentation of Plant Leaf Disease,” in 4th International Conference on Information Systems and Computer Networks (ISCON), 2019, pp. 713–716.
K. A. Sinuraya, S. Suwilo, and M. S. Lydia, “Accuracy Analysis on Images Retrieval System using Radial Basis Function Algorithm and Coefficient Correlation,” in International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), 2020, pp. 99–104.
R. I. Borman and B. Priyopradono, “Implementasi Penerjemah Bahasa Isyarat Pada Bahasa Isyarat Indonesia (BISINDO) Dengan Metode Principal Component Analysis (PCA),” J. Inform. J. Pengemb. IT, vol. 03, no. 1, pp. 103–108, 2018.
I. Ahmad, Y. Rahmanto, R. I. Borman, F. Rossi, Y. Jusman, and A. D. Alexander, “Identification of Pineapple Disease Based on Image Using Neural Network Self-Organizing Map (SOM) Model,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022.
S. Bhahri and R. Rachmat, “Transformasi Citra Biner Menggunakan Metode Thresholding Dan Otsu Thresholding,” J. Sist. Inf. dan Teknol. Inf., vol. 7, no. 2, pp. 195–203, 2018.
K. Saputra S and M. I. Perangin-angin, “Ekstraksi Fitur Morfologi Daun Sebagai Penciri Pada Tanaman Obat,” in Seminar Nasional Aplikasi Teknologi Informasi (SNATi) 2018, 2018, pp. 13–17.
D. Wu, Y. Lin, S. Lee, W. Tsai, T. Huang, and C. Dai, “Constructing RBF Networks for Classifying ECG Heartbeat Patterns,” in 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2019.
S. S. Chouhan, A. Kaul, U. P. Singh, and S. Jain, “Bacterial Foraging Optimization Based Radial Basis Function Neural Network (BRBFNN) for Identification and Classification of Plant Leaf Diseases : An Automatic Approach Towards Plant Pathology,” IEEE Access, vol. 6, pp. 8852–8863, 2018, doi: 10.1109/ACCESS.2018.2800685.
Y. Wenmin, “A Modified Radial Basis Function Method for Predicting Debris Flow Mean Velocity,” J. Eng. Technol. Sci., vol. 49, no. 5, pp. 561–574, 2017, doi: 10.5614/j.eng.technol.sci.2017.49.5.1.
M. Akbar, Q. Quraysh, and R. I. Borman, “Otomatisasi Pemupukan Sayuran Pada Bidang Hortikultura Berbasis Mikrokontroler Arduino,” J. Tek. dan Sist. Komput., vol. 2, no. 2, pp. 15–28, 2021.
R. I. Borman, Y. Fernando, and Y. E. P. Yudoutomo, “Identification of Vehicle Types Using Learning Vector Quantization Algorithm with Morphological Features,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 2, pp. 339–345, 2022.
H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, “Classification of Vehicle Types Using Backpropagation Neural Networks with Metric and Ecentricity Parameters,” J. Ris. Inform., vol. 4, no. 1, pp. 65–70, 2021, doi: 10.34288/jri.v4i1.293.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Jenis Tanaman Fast Growing Species Menggunakan Algoritma Radial Basis Function Berdasarkan Citra Daun
Pages: 2005−2014
Copyright (c) 2023 Rini Nuraini, Silvia Harlena, Farida Amalya, Deny Ariestiandy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















