Data Mining Korelasi Penjualan Suku Cadang Sepeda Motor Menggunakan Metode Algoritma Apriori


  • Asma Ul Husna * Mail STMIK Kaputama, Binjai, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Apriori Algorithm; Spare Parts Sales

Abstract

By utilizing customer data that has been stored in a database, management can find out how the current sales system is less efficient, therefore a system is needed to process information data more quickly and precisely in increasing sales of motorbike spare parts by using the Data Mining application. The Apriori Algorithm method works by searching and finding patterns of association between the products being marketed, so that later it can help the company in improving the associated items. And with sales transaction data, companies can know better how they should increase spare parts stock in the company. From the results of testing sales of motorbike spare parts with a total of 219 data, the results of the Apriori Algorithm calculations are: A3 (N-Max) has 23 items, M2 (Yamaha) has 35 items, S1 (Brake Pads) has 15 items.

References

[1] Betha Sidik, Ir., (2004), Pemograman Web denganPHP, Informatika, Bandung.
[2] Sri Mariska Hutabarat, & Anita Sindar, (2019), DATA MINING PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN ALGORITMA K-MEANS, STMIK Pelita Nusantara Medan
[3] Khairul, Ummi (2015), ANALISIS DATA MINING DALAM PENJUALAN SPAREPART MOBIL DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI (STUDI KASUS : Pt. Idk 1 MEDAN), Universitas Potensi Utama.
[4] Indrajit, R. E., & Djokopranoto, R. (2003). Manajemen Persediaan , Barang Umum dan Suku Cadang Untuk Pemeliharaan dan Operasi. Jakarta:
[5] Yuli Mardi.2015. Principles of Data Mining, London:Springer.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Data Mining Korelasi Penjualan Suku Cadang Sepeda Motor Menggunakan Metode Algoritma Apriori

Dimensions Badge
Article History
Submitted: 2023-10-12
Published: 2023-08-31
Abstract View: 170 times
Section
Articles