PREDIKSI PEMAKAIAN AIR MENGGUNAKAN METODE BACKPROPAGATION (STUDI KASUS PDAM TIRTA WAMPU)


  • Nuri Afrida * Mail STMIK Kaputama Binjai, Binjai, Indonesia
  • Suci Ramadani STMIK Kaputama Binjai, Binjai, Indonesia
  • Indah Ambarita STMIK Kaputama Binjai, Binjai, Indonesia
  • (*) Corresponding Author
Keywords: Prediction; Water Usage; Artificial Neural Network; Backpropagation

Abstract

Water is one of the necessities and a source of life that is very vital and absolutely necessary for all living things, especially humans. That's why the supply of clean water is very necessary for consumption purposes, high water use results in the need for clean water availability continues to increase, while the supply of clean water continues to decrease every year along with the large number of open green lands that are used as settlements or buildings. For this reason, PDAM needs to provide as much water as possible so that it can meet daily human needs. The Backpropagation method is one of the methods in Artificial Neural Network which has one or more hidden layers and a back propagation process for error correction. Based on the analysis that has been carried out, namely from training data, training targets and water usage test data, it can produce predictions on the number of predictions for the amount of water use with a total prediction of 43633298 M3 which has increased in the previous year, namely 4362905 M3, with a target error of 0.2, the length of iteration with a duration of time. or the length of learning is 00.17.

References

[1] Ajis Trigunawan, Woro Isti Rahayu, R. A. (2020). Regresi Linier Untuk Prediksi Jumlah Penjualan Terhadap Permintaan (R. M. Awangga (ed.)). Informatics Research Center.
[2] Away, G. A. (2014). The Shortcut of MATLAB Programming. Informatika. Bandung.
[3] Baksir, A. H., Fuad, A., Tempola, F., & Rosihan. (2020). Prediksi Tingkat Kualitas Kesuburan Pria Dengan Jaringan Saraf Tiruan Backpropagation. JIKO (Jurnal Informatika Dan Komputer), 3(2), 107–112. https://doi.org/10.33387/jiko
[4] Https://www.geologinesia.com/2018/05/apa- itu-air.html. (n.d.). No Title.
[5] Irwanda, S., Hardinata, J. T., & Damanik, I.
[6] S. (2019). Jaringan Syaraf Tiruan Backpropogation dalam Memprediksi Jumlah Tilang di Kejaksaan Negeri Simalungun. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 697. https://doi.org/10.30645/senaris.v1i0.76
[7] Kusumodestoni, R. H., & Zyen, A. K. (2015).
[8] Prediksi kecepatan angin dengan model neural network. Prediksi, 6(1), 7.
[9] Prasetyo, E. (2012). Data Mining: Konsep dan Aplikasi menggunakan MATLAB. CV. Andi Offset. Yogyakarta.
[10] Pusadan, M. Y. (2015). Pemrograman MATLAB pada Sistem Pakar Fuzzy. CV. Budi Utama. Yogyakarta.
[11] Sitorus, L. (2015). Algoritma dan Pemograman. CV. Andi Offset, Yogyakarta.
[12] Sugiarti, Y. (2013). Analisis dan Perancangan UML (United Modeling Language) Generated VB.6. Graha Ilmu. Yogyakarta.
[13] Sunardi, Anton Yudhana, G. Z. M. (2020).
[14] Sistem Prediksi Curah Hujan Bulanan Menggunakan Jaringan Saraf Tiruan Backpropagation. Jurnal Sistem Informasi.
[15] T.Sutojo, Edy mulyanto, V. suhartono. (2011). Kecerdasan Buatan. CV. Andi Offset. Yogyakarta.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel PREDIKSI PEMAKAIAN AIR MENGGUNAKAN METODE BACKPROPAGATION (STUDI KASUS PDAM TIRTA WAMPU)

Dimensions Badge
Article History
Submitted: 2022-05-02
Published: 2022-06-03
Abstract View: 384 times
PDF Download: 389 times
Issue
Section
Articles