Klasifikasi Fraud Pada Transaksi Finansial Melalui Integrasi TabTransformer dan Oversampling Generatif CTGAN
Abstract
Extreme class imbalance in the BankSim dataset (1.2% fraud) is a major hurdle to building reliable detection systems. This study proposes the integration of the TabTransformer architecture with the Conditional Tabular GAN (CTGAN) oversampling technique to address majority class bias. Data quality evaluations indicate that CTGAN produces synthetic data with an overall quality score of 90.05% and a column pair correlation trend of 91.63%. Experimental findings prove the proposed model delivers superior performance, achieving an F1-Score of 85.34%, a Recall of 81.39%, and a Balanced Accuracy of 90.64%. These results significantly outperform the SMOTE technique, which recorded an F1-Score of 83.99% but suffered from probability calibration failure with an extreme optimal threshold of 0.98. In contrast, the CTGAN scenario demonstrates efficient decision threshold stability at 0.46. Validation through SHAP analysis confirms that engineered variables such as merchantRisk, custStepDiff, and amtZScoreByCat provide dominant contributions to model predictions. This research concludes that the synergy of the Data-Centric AI paradigm facilitates the creation of robust, precise, and highly accountable classification models for digital banking protection within financial transaction systems.
Downloads
References
Alshawi, B. (2023). Utilizing GANs for credit card fraud detection: A comparison of supervised learning algorithms. Engineering, Technology & Applied Science Research, 13(6), 12264–12270. https://doi.org/10.48084/etasr.6434
Assabil, J. J. (2024). Credit card fraud detection using machine learning algorithms: A comparative study of six models. International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 862–875. https://ijisae.org/index.php/IJISAE/article/view/7040
Bank Indonesia. (2024, April 27). Laporan kebijakan moneter triwulan IV 2024. Departemen Kebijakan Ekonomi dan Moneter. https://www.bi.go.id/id/publikasi/laporan/Pages/Laporan-Kebijakan-Moneter-Triwulan-I-2024.aspx
Bonde, L., & Bichanga, A. K. (2025). Improving credit card fraud detection with ensemble deep learning-based models: A hybrid approach using SMOTE-ENN. Journal of Computing Theories and Applications, 2(3), 383–394. https://doi.org/10.62411/jcta.12021
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
Conteh, A. A., & Zhou, J. (2025). Credit card fraud detection with imbalanced small data using TabTransformer and cost-sensitive learning. Dalam G. Xu, W. Zhou, J. Zhang, Y. Zhang, & Y. Jia (Ed.), Cyberspace Simulation and Evaluation (Vol. 2422, hlm. 35–50). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-4509-1_3
Dharmana, I. W., Gunadi, I. G. A., & Dewi, L. J. E. (2024). Deteksi transaksi fraud kartu kredit menggunakan oversampling ADASYN dan seleksi fitur SVM-RFECV. Jurnal Teknologi Informasi dan Ilmu Komputer, 11(1), 125–134. https://doi.org/10.25126/jtiik.20241117640
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. http://www.deeplearningbook.org
Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. (2020). TabTransformer: Tabular data modeling using contextual embeddings (No. arXiv:2012.06678). arXiv. https://doi.org/10.48550/arXiv.2012.06678
Ibrahim, M. M., & Alfauzan, S. (2025). Analisis kinerja model machine learning untuk mendeteksi transaksi fraud pada sistem pembayaran online. Jurnal Ilmiah Nusantara, 2(3), 35–49. https://doi.org/10.61722/jinu.v2i3.4276
Lopez-Rojas, E. A., & Axelsson, S. (2014, September 10). BankSim: A bank payment simulation for fraud detection research. 26th European Modeling and Simulation Symposium, EMSS 2014. https://www.researchgate.net/publication/265736405_BankSim_A_Bank_Payment_Simulation_for_Fraud_Detection_Research
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30. https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
Nugraha, R. A., Pardede, H. F., & Subekti, A. (2022). Oversampling based on generative adversarial networks to overcome imbalance data in predicting fraud insurance claim. Kuwait Journal of Science. https://doi.org/10.48129/kjs.splml.19119
Odeyemi, O., Mhlongo, N. Z., Nwankwo, E. E., & Oluwatobi Timothy Soyombo. (2024). Reviewing the role of AI in fraud detection and prevention in financial services. International Journal of Science and Research Archive, 11(1), 2101–2110. https://doi.org/10.30574/ijsra.2024.11.1.0279
Padhi, I., Schiff, Y., Melnyk, I., Rigotti, M., Mroueh, Y., Dognin, P., Ross, J., Nair, R., & Altman, E. (2021). Tabular transformers for modeling multivariate time series. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3565–3569. https://doi.org/10.1109/ICASSP39728.2021.9414142
Patil, T. (2021). Credit card fraud detection using Conditional Tabular Generative Adversarial Networks (CT-GAN) and supervised machine learning techniques [Master’s thesis, National College of Ireland]. https://norma.ncirl.ie/5209/1/tusharvasantpatil.pdf
Priatna, W., Prasetyo, S. Y. J., Wijono, S., Maria, E., & Manongga, D. (2025). Deteksi Anomali dalam Penipuan E-commerce Menggunakan Hybrid Autoencoder-Transformer Frameworks. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 11(1), 33–40. https://doi.org/10.26418/jp.v11i1.82330
Putri, K. A. (2025, Februari 11). OJK terima 42.257 laporan penipuan, total kerugian korban tembus Rp700,2 M. Infobanknews. https://infobanknews.com/ojk-terima-42-257-laporan-penipuan-total-kerugian-korban-tembus-rp7002-m/
World Bank Group. (2023, Oktober). Fraud risks in fast payments. https://fastpayments.worldbank.org/sites/default/files/2023-10/Fraud%20in%20Fast%20Payments_Final.pdf
Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling tabular data using Conditional GAN. Advances in Neural Information Processing Systems, 32. https://proceedings.neurips.cc/paper_files/paper/2019/hash/254ed7d2de3b23ab10936522dd547b78-Abstract.html
Yuhertiana, I., & Amin, A. H. (2024). Artificial intelligence driven approaches for financial fraud detection: A systematic literature review. KnE Social Sciences. https://doi.org/10.18502/kss.v9i20.16551
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Fraud Pada Transaksi Finansial Melalui Integrasi TabTransformer dan Oversampling Generatif CTGAN
Pages: 1308-1321
Copyright (c) 2026 Tangguh Prana Welas Sukma; Ery Hartati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).













