Klasifikasi Fraud Pada Transaksi Finansial Melalui Integrasi TabTransformer dan Oversampling Generatif CTGAN


  • Tangguh Prana Welas Sukma Universitas Multi Data Palembang, Palembang, Indonesia
  • Ery Hartati * Mail Universitas Multi Data Palembang, Palembang, Indonesia
  • (*) Corresponding Author
Keywords: Fraud Detection; TabTransformer; CTGAN; Feature Engineering; SHAP

Abstract

Extreme class imbalance in the BankSim dataset (1.2% fraud) is a major hurdle to building reliable detection systems. This study proposes the integration of the TabTransformer architecture with the Conditional Tabular GAN (CTGAN) oversampling technique to address majority class bias. Data quality evaluations indicate that CTGAN produces synthetic data with an overall quality score of 90.05% and a column pair correlation trend of 91.63%. Experimental findings prove the proposed model delivers superior performance, achieving an F1-Score of 85.34%, a Recall of 81.39%, and a Balanced Accuracy of 90.64%. These results significantly outperform the SMOTE technique, which recorded an F1-Score of 83.99% but suffered from probability calibration failure with an extreme optimal threshold of 0.98. In contrast, the CTGAN scenario demonstrates efficient decision threshold stability at 0.46. Validation through SHAP analysis confirms that engineered variables such as merchantRisk, custStepDiff, and amtZScoreByCat provide dominant contributions to model predictions. This research concludes that the synergy of the Data-Centric AI paradigm facilitates the creation of robust, precise, and highly accountable classification models for digital banking protection within financial transaction systems.

Downloads

Download data is not yet available.

References

Alshawi, B. (2023). Utilizing GANs for credit card fraud detection: A comparison of supervised learning algorithms. Engineering, Technology & Applied Science Research, 13(6), 12264–12270. https://doi.org/10.48084/etasr.6434

Assabil, J. J. (2024). Credit card fraud detection using machine learning algorithms: A comparative study of six models. International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 862–875. https://ijisae.org/index.php/IJISAE/article/view/7040

Bank Indonesia. (2024, April 27). Laporan kebijakan moneter triwulan IV 2024. Departemen Kebijakan Ekonomi dan Moneter. https://www.bi.go.id/id/publikasi/laporan/Pages/Laporan-Kebijakan-Moneter-Triwulan-I-2024.aspx

Bonde, L., & Bichanga, A. K. (2025). Improving credit card fraud detection with ensemble deep learning-based models: A hybrid approach using SMOTE-ENN. Journal of Computing Theories and Applications, 2(3), 383–394. https://doi.org/10.62411/jcta.12021

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953

Conteh, A. A., & Zhou, J. (2025). Credit card fraud detection with imbalanced small data using TabTransformer and cost-sensitive learning. Dalam G. Xu, W. Zhou, J. Zhang, Y. Zhang, & Y. Jia (Ed.), Cyberspace Simulation and Evaluation (Vol. 2422, hlm. 35–50). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-4509-1_3

Dharmana, I. W., Gunadi, I. G. A., & Dewi, L. J. E. (2024). Deteksi transaksi fraud kartu kredit menggunakan oversampling ADASYN dan seleksi fitur SVM-RFECV. Jurnal Teknologi Informasi dan Ilmu Komputer, 11(1), 125–134. https://doi.org/10.25126/jtiik.20241117640

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. http://www.deeplearningbook.org

Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. (2020). TabTransformer: Tabular data modeling using contextual embeddings (No. arXiv:2012.06678). arXiv. https://doi.org/10.48550/arXiv.2012.06678

Ibrahim, M. M., & Alfauzan, S. (2025). Analisis kinerja model machine learning untuk mendeteksi transaksi fraud pada sistem pembayaran online. Jurnal Ilmiah Nusantara, 2(3), 35–49. https://doi.org/10.61722/jinu.v2i3.4276

Lopez-Rojas, E. A., & Axelsson, S. (2014, September 10). BankSim: A bank payment simulation for fraud detection research. 26th European Modeling and Simulation Symposium, EMSS 2014. https://www.researchgate.net/publication/265736405_BankSim_A_Bank_Payment_Simulation_for_Fraud_Detection_Research

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30. https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

Nugraha, R. A., Pardede, H. F., & Subekti, A. (2022). Oversampling based on generative adversarial networks to overcome imbalance data in predicting fraud insurance claim. Kuwait Journal of Science. https://doi.org/10.48129/kjs.splml.19119

Odeyemi, O., Mhlongo, N. Z., Nwankwo, E. E., & Oluwatobi Timothy Soyombo. (2024). Reviewing the role of AI in fraud detection and prevention in financial services. International Journal of Science and Research Archive, 11(1), 2101–2110. https://doi.org/10.30574/ijsra.2024.11.1.0279

Padhi, I., Schiff, Y., Melnyk, I., Rigotti, M., Mroueh, Y., Dognin, P., Ross, J., Nair, R., & Altman, E. (2021). Tabular transformers for modeling multivariate time series. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3565–3569. https://doi.org/10.1109/ICASSP39728.2021.9414142

Patil, T. (2021). Credit card fraud detection using Conditional Tabular Generative Adversarial Networks (CT-GAN) and supervised machine learning techniques [Master’s thesis, National College of Ireland]. https://norma.ncirl.ie/5209/1/tusharvasantpatil.pdf

Priatna, W., Prasetyo, S. Y. J., Wijono, S., Maria, E., & Manongga, D. (2025). Deteksi Anomali dalam Penipuan E-commerce Menggunakan Hybrid Autoencoder-Transformer Frameworks. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 11(1), 33–40. https://doi.org/10.26418/jp.v11i1.82330

Putri, K. A. (2025, Februari 11). OJK terima 42.257 laporan penipuan, total kerugian korban tembus Rp700,2 M. Infobanknews. https://infobanknews.com/ojk-terima-42-257-laporan-penipuan-total-kerugian-korban-tembus-rp7002-m/

World Bank Group. (2023, Oktober). Fraud risks in fast payments. https://fastpayments.worldbank.org/sites/default/files/2023-10/Fraud%20in%20Fast%20Payments_Final.pdf

Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling tabular data using Conditional GAN. Advances in Neural Information Processing Systems, 32. https://proceedings.neurips.cc/paper_files/paper/2019/hash/254ed7d2de3b23ab10936522dd547b78-Abstract.html

Yuhertiana, I., & Amin, A. H. (2024). Artificial intelligence driven approaches for financial fraud detection: A systematic literature review. KnE Social Sciences. https://doi.org/10.18502/kss.v9i20.16551


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Fraud Pada Transaksi Finansial Melalui Integrasi TabTransformer dan Oversampling Generatif CTGAN

Dimensions Badge
Article History
Published: 2026-01-11
Abstract View: 218 times
PDF Download: 71 times
Issue
Section
Articles