Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita


  • Fitriana Harahap * Mail Universitas Potensi Utama, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Clustering; K-Means; K-Medoids; Mentally Disabled

Abstract

So far, the class placement of mentally retarded students is based on the child's entry age when registering at SLB C Muzdalifah, did not try the Intelligence Quotient (IQ) test for mentally retarded students in classifying student classes. This study aims to compare the results of class clustering for mentally retarded students using the K-Means and K-Medoids Clustering methods. The clusters produced by the two methods are 3. With the K-Means Clustering method, there are 8 students with mild mental retardation, 14 students with moderate mental retardation, and 14 students with severe mental retardation. Meanwhile, with the K-Medoids Clustering method, it can be seen that there are 7 students with mild mental retardation, 19 students with moderate mental retardation, and 10 students with severe mental retardation. The DBI value for K-Means validation is 0.161 and the DBI value for K-Medoids validation is 0.281. Thus, clustering using the K-Means Clustering method has better results than the K-Medoids Clustering method, because it produces a smaller DBI value of 0.161

References

A. Mira Yunita, E. Nurafliyan Susanti, and R. Rizky, “Implementasi Metode Weight Product Dalam Penentuan Klasifikasi Kelas Tunagrahita,” JSiI (Jurnal Sist. Informasi), vol. 7, no. 2, pp. 78–82, 2020, doi: 10.30656/jsii.v7i2.2408.

Rosmiati, “Pemerolehan Bahasa Indonesia Pada Anak Tunagrahita Pada Tahap Perkembangan Kognitif,” J. Penelitian, Pendidikan, dan Pembelajaran, vol. 13, no. 1, pp. 8–15, 2019.

M. Sadikin, R. Rosnelly, R. Roslina, and ..., “Penerapan Data Mining Pada Penerimaan Dosen Tetap Menggunakan Metode Naive Bayes Classifier dan C4. 5,” J. Media …, vol. 4, pp. 1100–1109, 2020, doi: 10.30865/mib.v4i4.2434.

R. R. Husin Sariangsah*, Wanayumini, “Penentuan Kelas Menggunakan Algoritma K Medoids Untuk Clustering Siswa Tunagrahita,” J. Media …, vol. 5, pp. 83–89, 2021, doi: 10.30865/mib.v5i1.2547.

S. Informasi and F. Teknik, “Optimalisasi Algoritma C4 . 5 untuk Prediksi Kerusakan Mesin ATM,” vol. 6, no. 1, pp. 12–21, 2021.

Athifaturrofifah, R. Goejantoro, and D. Yuniarti, “Perbandingan Pengelompokan K-Means dan K-Medoids Pada Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Studi Kasus : Data Titik Panas Di Indonesia Pada 28 April 2018),” J. EKSPONENSIAL, vol. 10, no. 2, pp. 143–152, 2019.

N. Febrisma, “Upaya Meningkatkan Kosa Kata Melalui Metode Bermain Peran Pada Anak Tunagrahita Ringan,” J. Ilm. Pendidik. Khusus, vol. 1, no. 2, pp. 109–121, 2013.

I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019, doi: 10.24014/rmsi.v5i1.7381.

S. Eliyanda, “MENGGUNAKAN METODE NAÏVE BAYES,” pp. 1–17.

R. Rousyati, F. F. Wati, D. Pratmanto, and A. Crisna, “Pengelompokan Siswa Penyandang Disabilitas Berdasarkan Tingkat Tunagrahita Menggunakan Algoritma K-Medoids,” Indones. J. Softw. Eng., vol. 5, no. 1, pp. 134–142, 2019, doi: 10.31294/ijse.v5i1.6550.

V. A. P. Sangga, “Perbandingan Algoritma K-Means dan Algoritma K-Medoids dalam Pengelompokan Komoditas Peternakan di Provinsi Jawa Tengah Tahun 2015,” Tugas Akhir Jur. Stat. Fak. Mat. dan Ilmu Pengetah. Alam Univ. Islam Inndonesia Yogyakarta, vol. 53, no. 9, pp. 1689–1699, 2018.

Y. H. Susanti and E. Widodo, “Perbandingan K-Means dan K-Medoids Clustering terhadap Kelayakan Puskesmas di DIY Tahun 2015,” Pros. SI MaNIs (Seminar Nas. Integr. Mat. dan Nilai Islam., vol. 1, no. 1, pp. 116–122, 2017.

Z. Nabila, A. R. Isnain, P. Permata, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, pp. 100–108, 2021.

M. N. P. Pamulang, M. N. Aini, and U. Enri, “Komparasi Distance Measure Pada K-Medoids Clustering untuk Pengelompokkan Penyakit Ispa,” EDUMATIC J. Pendidik. Inform., vol. 5, no. 1, pp. 99–107, 2021, doi: 10.29408/edumatic.v5i1.3359.

F. Tempola, M. Muhammad, and A. Mubarak, “Penggunaan Internet Dikalangan Siswa SD di Kota Ternate: Suatu Survey, Penerapan Algoritma Clustering dan Validasi DBI,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, p. 1153, 2020, doi: 10.25126/jtiik.2020722370.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita

Article History
Submitted: 2021-09-08 Published: 2021-09-17