Implementasi Business Intelligence Menggunakan Tableau dalam Analisis Kasus Kematian Akibat Penyakit Demam Berdarah Dengue
Abstract
Dengue Hemorrhagic Fever (DHF) remains one of the most serious infectious diseases in Indonesia, particularly in the West Java Province. The high population density, combined with environmental conditions that support the proliferation of dengue virus-carrying mosquitoes, has led to the continuous emergence of cases each year. Based on data analysis, during the period from 2014 to 2023, a total of 225,481 deaths caused by DHF were recorded in this province. When categorized by gender, the number of male fatalities reached 117,107 cases, while female deaths amounted to 108,374 cases. Among all regions, Bandung City and Bogor City recorded the highest numbers of fatalities, with 54,900 deaths in Bandung and 23,802 in Bogor during the same period. One of the obstacles faced in efforts to manage DHF is the lack of informative, concise, and easily accessible data for various relevant stakeholders. In fact, such information is crucial as a basis for determining more targeted disease prevention and control strategies. In response to this situation, this study seeks to offer a solution by applying the concept of Business Intelligence (BI) through the use of Tableau software to visualize mortality data related to DHF. The process begins with an Extract, Transform, Load (ETL) stage applied to secondary data obtained from the Satu Data Indonesia portal, involving a total of 540 data records on DHF deaths. This is followed by analysis and presentation in the form of an interactive dashboard. The visualization results are displayed using various types of charts, including geo mapping, line charts, horizontal bar charts, stacked bar charts, and pie charts. Each visualization provides clearer insights into the annual trends of DHF cases, distributions by gender, and the geographical spread of fatalities across all regions in West Java. In conclusion, the implementation of Tableau within the Business Intelligence framework has proven effective in processing and simplifying initially complex data into visual information that is easier to interpret. Furthermore, these visualizations can serve as a valuable reference for data-driven decision-making processes, particularly in supporting the prevention and control efforts of DHF cases in the West Java Province.
Downloads
References
Andi Putra Hia, F., Putro Utoma, D., & Aripin, S. (2024). Implementasi Metode Clustering Untuk Analisa Data Set Penderita Demam Berdarah Menggunakan Algoritma K-Medoins. Informasi Dan Teknologi Ilmiah (INTI) , 12(1), 115–123.
Audi Permaisuri, R. (2022). Visualisasi dashboard tableau dan peramalan jumlah kasus demam berdarah dengue di DKI Jakarta menggunakan metode arima [Thesis]. UIN Syarif Hidayatullah Jakarta .
Ayu Sariasih, F. (2022). Implementasi Business Intelligence Dashboard dengan Tableau Public untuk Visualisasi Propinsi Rawan Banjir di Indonesia. Jurnal Pendidikan Tambusai, 6(2), 14424–14431.
Bahar, E., Nadya Irmalia Azizah, N., Sri Hayuningsih, A., & Dewi Agushinta R, D. (2023). Analisis Data Pasien Ibu Hamil Menggunakan Metode Business Intelligence. Indonesian Journal of Business Intelligence, 6(2), 116–123.
Fitri Lessy, D., Avorizano, A., & Noor Hasan, F. (2022). Penerapan Business Intelligence Untuk Menganalisa Data Gempa Bumi di Indonesia Menggunakan Tableau Public. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 302–309.
Gunawan Rambe, D., Dimas Febriawan, D., & Firman Noor Hasan, F. (2023). Implementasi Visualisasi Dashboard Business Intelligence Untuk Analisa Data Penumpang KAI Menggunakan Tableau. Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 4(4), 1134–1147.
Helena Elizabeth, A., & Yudhastut, R. (2023). Gambaran Kasus Demam Berdarah Dengue (DBD) di Provinsi Jawa Barat Tahun 2016-2020. Media Gizi Kesmas, 12(1), 179–186.
Ifan Junaedi, lfan, Abdillah, D., & Verdi Yasin, V. (2020). Analisis Perancangan Dan Pembangunan Aplikasi Business Intelligence Penerimaan Negara Bukan Pajak Kementerian Keuangan Ri. JISAMAR (Journal of Information System, Applied, Management, Accounting and Researh), 4(3), 88–101.
Jayanti Purwantini, N. P., Yudi Anggara Wijaya, I. N., & Queena Fredlina, K. (2020). Implementasi Business Intelligence Untuk Menentukan Trend Penjualan Barang (Studi Kasus: Pt. Menikmati Distribusi). SMART TECHNO (Smart Technology, Informatic, and Technopreneurship), 2(2), 73–87.
Kaligis, E., T. Ratag, B., & F. L. Langi, F. (2023). Analysis Of Dengue Hemorrhagic Fever Surveillance Data (2012-2021) In Indonesia. Indonesian Journal of Public Health and Preventive Medicine, 2(1), 1–19.
Labib Mu’tashim, M., Aditya Wibisono, B., Ayu Damayanti, S., Richard Arianto, M., & Sandya Prasvita, D. (2022). Implementasi Business Intelligence Pada Manajemen Report Bank XYZ . Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA, 3(1), 248–263.
Rafli Wiro Negoro, P., & Imanda, R. (2024). Implementasi Business Intelligence dengan Tableau untuk Optimasi Pengambilan Keputusan Perusahaan Freight Forwarder. Jurnal Ilmiah KOMPUTASI, 23(3), 301–310.
Ramadhan, A. (2024). Panduan Membuat Visualisasi Data Dengan Tableau Dan Power Bi. Teknologipintar.Org, 4(5), 1–19.
Ramadhani, Y., Marisa Khairina, D., & Maharani, S. (2024). Implementasi Business Intelligence Dalam Analisa Penjualan Mobil Mitsubishi Menggunakan Visualisasi Data. Adopsi Teknologi Dan Sistem Informasi(ATASI), 3(1), 1–11.
Rusydi, A., & Noor Hasan, F. (2023). Implementasi business intelligence untuk visualisasi kekuatan sinyal internet di Indonesia menggunakan platform tableau. TEKNOSAINS: Jurnal Sains, Teknologi Dan Informatika, 2(1), 132–142.
Santhi, T., Monica Sar, A., Ketut Alit Maha Putra, D., Surya Mahendra, G., & Putri Ariasih, M. (2023). Implementasi Business Intelligence Menggunakan Tableau Untuk Visualisasi Prediksi Kelulusan Mahasiswa. Jurnal Software Engineering and Information System (SEIS), 3(2), 51–58.
Siska, & Safryda Putri, D. (2021). Implementasi Business Intelligence Untuk Menganalisis Perbandingan Data Kasus Covid-19 Di Jawa Barat Sebelum Psbb Dan Setelah Psbb. Jurnal Ilmiah Edutic, 7(2), 94–104.
Supangat, U., Laelatul Badriah, D., Mamlukah, & Suparman, R. (2023). Faktor-faktor yang berhubungan dengan kematian kasus demam berdarah di kota Tasikmalaya 2022. Journal of Health Research Science, 3(1), 46–53.
Tumini, T., & Sri Subekti, E. (2023). Implementasi Business Intelligence Untuk Menganalisis Data Proses Manufaktur Menggunakan Google Data Studio . Jurnal Ilmiah Teknik Informatika Dan Komunikasi , 3(3), 143–151.
Yanti, Y., Rahardiantoro, S., & Alfa Dito, G. (2023). Analisis Penggerombolan Spasio-temporal Kasus DBD di Jawa Barat Tahun 2016 –2021. Indonesian Journal of Statistics and Its Applications, 7(1), 56–63.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Business Intelligence Menggunakan Tableau dalam Analisis Kasus Kematian Akibat Penyakit Demam Berdarah Dengue
Pages: 964-974
Copyright (c) 2025 Oprin Muhammad Gilang, Irwansyah Irwansyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).













