Analisis Sentimen terhadap Jalan Rusak di Palembang Pada Media Sosial Menggunakan Algoritma Naïve Bayes
Abstract
In developed countries, the development of road infrastructure plays a vital role in driving economic development. The involvement of public authorities is very necessary in providing funds for infrastructure development, considering that roads are a very important form of public infrastructure. However, there are still some areas, such as Palembang, where damaged roads are still a serious problem. The Palembang regional government is suspected of being less proactive in improving road infrastructure in their area. In an effort to fight for the government's attention to road conditions in Palembang, the public uses social media as a means to voice complaints. A number of tweets, posts, and submissions using the keyword "Jalan Rusak Palembang" on Twitter, Instagram, and TikTok revealed that sentiment was found to be only 1.8% showing positive sentiment, 13.3% neutral sentiment, and 84.9% sentiment negativity towards damaged road conditions dominates. In order to collect further data regarding public perceptions of road conditions in Palembang, research was conducted using the Naïve Bayes algorithm. The test results show that the Naïve Bayes model provides an accuracy of 91,20, precision of 92,32%, recall of 91,20%, and F1 score of 91,26%, showing excellent performance in classifying public sentiment towards damaged roads in Palembang.
Downloads
References
Alrajak, M. S., Ernawati, I., & Nurlaili, I. (2020). Analisis sentimen terhadap Pelayanan PT PLN di Jakarta pada Twitter dengan Algoritma K- Nearest Neighbor (K-NN). Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA), 1(2), 110–122.
Anwar, K. (2022). Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes. KLIK: Kajian Ilmiah Informatika Dan Komputer, 2(4), 148–155. https://doi.org/10.30865/klik.v2i4.315
Arjunanto, M. R., & Waluyo, S. (2023). Analisis Sentimen Pada Media Sosial Twitter Terhadap Infrastruktur Jalan Di Lampung Menggunakan Algoritma K-Nearest Neighbor. Prosiding Seminar Nasional …, 2(September), 810–817. http://senafti.budiluhur.ac.id/index.php/senafti/article/view/914%0Ahttps://senafti.budiluhur.ac.id/index.php/senafti/article/download/914/557
Furqan, M., Sriani, S., & Sari, S. M. (2022). Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia. Techno.Com, 21(1), 51–60. https://doi.org/10.33633/tc.v21i1.5446
Juniarsih, S., Ripanti, E. F., & Pratama, E. E. (2020). Implementasi Naive Bayes Classifier pada Opinion Mining Berdasarkan Tweets Masyarakat Terkait Kinerja Presiden dalam Aspek Ekonomi. Jurnal Sistem Dan Teknologi Informasi (Justin), 8(3), 239. https://doi.org/10.26418/justin.v8i3.39118
Khairunnisa, S., Adiwijaya, A., & Faraby, S. Al. (2021). Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19). Jurnal Media Informatika Budidarma, 5(2), 406. https://doi.org/10.30865/mib.v5i2.2835
Luthfi Bangun Permadi, M., & Gumilang, R. (2024). Penerapan Algoritma CNN (Convolutional Neural Network) Untuk Deteksi Dan Klasifikasi Target Militer Berdasarkan Citra Satelit. Jurnal Sosial Teknologi, 4(2), 134–143. https://doi.org/10.59188/jurnalsostech.v4i2.1138
Mas Pintoko, B., & Muslim, K. (2018). Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naïve Bayes Classifier. E-Proceeding of Engineering, 5(3), 8121–8130.
Muhammad Afdal, & Elita, L. R. (2022). Penerapan Text Mining Pada Aplikasi Tokopedia Menggunakan Algoritma K-Nearest Neighbor. https://ejournal.uin-suska.ac.id/index.php/RMSI/article/view/16595
Nikmatun, Alvi, I., Waspada, & Indra. (2019). Implementasi Data Mining Untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor. Jurnal SIMETRIS, 10(2), 421–432.
Nofiyani, N., & Wulandari, W. (2022). Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining. Jurnal Media Informatika Budidarma, 6(3), 1621. https://doi.org/10.30865/mib.v6i3.4332
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711.
Nugroho, A., & Religia, Y. (2021). Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 504–510. https://doi.org/10.29207/resti.v5i3.3067
Prabowo, W. A., & Wiguna, C. (2021). Sistem Informasi UMKM Bengkel Berbasis Web Menggunakan Metode SCRUM. Jurnal Media Informatika Budidarma, 5(1), 149. https://doi.org/10.30865/mib.v5i1.2604
Priandi, M., & Painem. (2021). Analisis Sentimen Masyarakat Terhadap Pembelajaran Daring di Era Pandemi Covid-19 pada Media Sosial Twitter Menggunakan Ekstraksi Fitur Countvectorizer dan Algoritma K-Nearest Neighbor. Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA), 2(2), 311–319.
Rakhmawati, N. A., Waskitho, R. B., Rahman, D. A., & Nuha, M. F. A. U. (2021). Klasterisasi Topik Konten Channel Youtube Gaming Indonesia Menggunakan Latent Dirichlet Allocation. Journal of Information Engineering and Educational Technology, 5(2), 78–83. https://doi.org/10.26740/jieet.v5n2.p78-83
Rayuwati, Husna Gemasih, & Irma Nizar. (2022). IMPLEMENTASI AlGORITMA NAIVE BAYES UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID. Jural Riset Rumpun Ilmu Teknik, 1(1), 38–46. https://doi.org/10.55606/jurritek.v1i1.127
Salsabila, F., & Wibowo, A. (2023). Analisis Sentiment Terhadap Presiden Pada Facebook Dengan Menggunakan Metode Naive Bayes. 2(September), 818–825.
Seminar, P., Sains, N., Pada, A., Bayes, T., Na, M., Sentimen, A., Teknik, F., & Wahid, U. (2024). 253 | Fakultas Teknik Universitas Wahid Hasyim. April 2008, 253–258.
Statistik, B. P. (2022). Badan Pusat Statistik Provinsi Sumatera Selatan.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen terhadap Jalan Rusak di Palembang Pada Media Sosial Menggunakan Algoritma Naïve Bayes
Pages: 1-10
Copyright (c) 2024 Muhammad Rifqi Virgiansyah, Stephanie Stephanie, Muhammad Rizky Pribadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).